With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis o...With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.展开更多
In e-commerce the multidimensional data analysis based on the Web data needs integrating various data sources such as XML data and relational data on the conceptual level. A conceptual data description approach to mul...In e-commerce the multidimensional data analysis based on the Web data needs integrating various data sources such as XML data and relational data on the conceptual level. A conceptual data description approach to multidimensional data model the UML galaxy diagram is presented in order to conduct multidimensional data analysis for multiple subjects. The approach is illuminated using a case of 2_roots UML galaxy diagram that takes marketing analysis of TV products involved one retailer and several suppliers into consideration.展开更多
Statistics is a powerful tool for data measurement. Statistical techniques properly planned and executed give meaning to meaningless data. The difficulty some practitioners encounter hinges on the fact that though the...Statistics is a powerful tool for data measurement. Statistical techniques properly planned and executed give meaning to meaningless data. The difficulty some practitioners encounter hinges on the fact that though there are numerous statistical methods available for use in analysis, the extent of their understanding and ease of using these tools for analysis is limited. This study has twofold purpose: firstly, literature on categorical data commonly used in research w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> reviewed</span><span style="font-family:Verdana;">;</span><span style="font-family:""><span style="font-family:Verdana;"> next, we reported the results of a survey we designed and executed. Categorical data was collected via questionnaire and analyzed to serve as a backbone of the robustness of categorical data. Several conjec</span><span style="font-family:Verdana;">tures about the independence of the socio-economic variables and e-commence</span><span style="font-family:Verdana;"> were tested. Some of the factors influencing patronage of e-commerce were </span><span style="font-family:Verdana;">identified. It is clear from the literature that as one’s academic qualification</span><span style="font-family:Verdana;"> improves</span></span><span style="font-family:Verdana;">, </span><span style="font-family:""><span style="font-family:Verdana;">there is an associated improvement in their preference for e-commerce, but the results revealed otherwise. Size of family was found to influence e-commerce. Both income and social status positively affected pa</span><span style="font-family:Verdana;">tronage in e-commerce. Gender also appeared to affect patronage in e-commerce</span><span style="font-family:Verdana;">. 62.3% of staff had patronized e-commerce</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> This shows that e-commerce patronage was gradually increasing. It is therefore our considered view that policy documents regulating and monitoring the use of e-commerce be developed to increase e-commerce participation across the globe</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It is also recommended that the bottlenecks which obstruct patronage in e-commence be addressed so that a lot more staff will develop a positive attitude towards e-commerce.展开更多
Under the background of national development strategy in the new era,cross-border e-commerce with the help of Internet platfbnn can realize the interconnection between producers and consumers,and gradually expand the ...Under the background of national development strategy in the new era,cross-border e-commerce with the help of Internet platfbnn can realize the interconnection between producers and consumers,and gradually expand the influence of international trade.Based on big data technology,this paper builds an industry chain with cross-border e-commerce members'participation,and analyzes the specific application of big data in the product support,internal operation,external marketing,logistics service and service evaluation of cross-border e-commerce industry chain.The purpose is to effectively promote the healthy development of cross-border e-commerce and improve China's trade and economic level.展开更多
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
AI applications have become ubiquitous,bringing significant convenience to various industries.In e-commerce,AI can enhance product recommendations for individuals and provide businesses with more accurate predictions ...AI applications have become ubiquitous,bringing significant convenience to various industries.In e-commerce,AI can enhance product recommendations for individuals and provide businesses with more accurate predictions for market strategy development.However,if the data used for AI applications is damaged or lost,it will inevitably affect the effectiveness of these AI applications.Therefore,it is essential to verify the integrity of e-commerce data.Although existing Provable Data Possession(PDP)protocols can verify the integrity of cloud data,they are not suitable for e-commerce scenarios due to the limited computational capabilities of edge servers,which cannot handle the high computational overhead of generating homomorphic verification tags in PDP.To address this issue,we propose PDP with Outsourced Tag Generation for AI-driven e-commerce,which outsources the computation of homomorphic verification tags to cloud servers while introducing a lightweight verification method to ensure that the tags match the uploaded data.Additionally,the proposed scheme supports dynamic operations such as adding,deleting,and modifying data,enhancing its practicality.Finally,experiments show that the additional computational overhead introduced by outsourcing homomorphic verification tags is acceptable compared to the original PDP.展开更多
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This...With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.展开更多
This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can e...This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.展开更多
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter...With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.展开更多
The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic respo...The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic response information under a strong noise background is a crucial scientific task to be addressed.To solve the noise suppression problem of the controlled-source electromagnetic method in strong interference areas,we propose an approach based on complex-plane 2D k-means clustering for data processing.Based on the stability of the controlled-source signal response,clustering analysis is applied to classify the spectra of different sources and noises in multiple time segments.By identifying the power spectra with controlled-source characteristics,it helps to improve the quality of the controlled-source response extraction.This paper presents the principle and workflow of the proposed algorithm,and demonstrates feasibility and effectiveness of the new algorithm through synthetic and real data examples.The results show that,compared with the conventional Robust denoising method,the clustering algorithm has a stronger suppression effect on common noise,can identify high-quality signals,and improve the preprocessing data quality of the controlledsource electromagnetic method.展开更多
The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pr...The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.展开更多
Objective To identify core acupoint patterns and elucidate the molecular mechanisms of acupuncture for primary depressive disorder(PDD)through data mining and network analysis.Methods A comprehensive literature search...Objective To identify core acupoint patterns and elucidate the molecular mechanisms of acupuncture for primary depressive disorder(PDD)through data mining and network analysis.Methods A comprehensive literature search was conducted across PubMed,Embase,Ovid Technologies(OVID),Web of Science,Cochrane Library,China National Knowledge Infrastructure(CNKI),China National Knowledge Infrastructure Database(VIP),Wanfang Data,and SinoMed Database from database foundation to January 31,2025,for clinical studies on acupuncture treatment of PDD.Descriptive statistics,high-frequency acupoint analysis,degree and betweenness centrality evaluation,and core acupoint prescription mining identified predominant therapeutic combinations for PDD.Network acupuncture was used to predict therapeutic target for the core acupoint prescription.Subsequent protein-protein interaction(PPI)network and molecular complex detection(MCODE)analyses were conducted to identify the key targets and functional modules.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses explored the underlying biological mechanisms of the core acupoint prescription in treating PDD.Results A total of 57 acupoint prescriptions underwent systematic analysis.The core therapeutic combinations comprised Baihui(GV20),Yintang(GV29),Neiguan(PC6),Hegu(LI4),and Shenmen(HT7).Network acupuncture analysis identified 88 potential therapeutic targets(79 overlapping with PDD),while PPI network analysis revealed central regulatory nodes,including interleukin(IL)-6,IL-1β,tumor necrosis factor(TNF)-α,toll-like receptor 4(TLR4),IL-10,brain-derived neurotrophic factor(BDNF),transforming growth factor(TGF)-β1,C-XC motif chemokine ligand 10(CXCL10),mitogen-activated protein kinase 3(MAPK3),and nitric oxide synthase 1(NOS1).MCODE-based modular analysis further elucidated three functionally coherent clusters:inflammation-homeostasis(score=6.571),plasticity-neurotransmission(score=3.143),and oxidative stress(score=3.000).GO and KEGG analyses demonstrated significant enrichment of the MAPK,phosphoinositide 3-kinase/protein kinase B(PI3K/Akt),and hypoxia-inducible factor(HIF)-1 signaling pathways.These mechanistic insights suggested that the antidepressant effects mediated through mechanisms of neuroinflammatory regulation,neuroplasticity restoration,and immune-oxidative stress homeostasis.Conclusion This study reveals that acupuncture alleviates depression through a multi-level mechanism,primarily involving the neuroinflammation suppression,neuroplasticity enhancement,and oxidative stress regulation.These findings systematically clarify the underlying mechanisms of acupuncture’s antidepressant effects and identify novel therapeutic targets for further mechanistic research.展开更多
Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe...Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.展开更多
In section‘Track decoding’of this article,one of the paragraphs was inadvertently missed out after the text'…shows the flow diagram of the Tr2-1121 track mode.'The missed paragraph is provided below.
Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to huma...Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).展开更多
The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utilit...The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.展开更多
With SPSS16.0 software, this paper chooses the statistical data of 11 cities in Hebei province to empirically study the agri-food logistics capability based on the method of factor analysis, and finally obtains the ra...With SPSS16.0 software, this paper chooses the statistical data of 11 cities in Hebei province to empirically study the agri-food logistics capability based on the method of factor analysis, and finally obtains the ranking of the 11 cities. It shows that, factor-cluster analysis is an effective method to analyze the logistics capability of agri-food. It can simplify the original complicated problem and lead to an objective, reliable and convincing conclusion.展开更多
Due to the impact of the COVID-19 pandemic,e-commerce and social media pervade people’s daily life,while offline businesses suffer from loss from traffic.In this paper the SWOT analysis method is employed to examine ...Due to the impact of the COVID-19 pandemic,e-commerce and social media pervade people’s daily life,while offline businesses suffer from loss from traffic.In this paper the SWOT analysis method is employed to examine the strengths,weaknesses,opportunities,and threats for RED,which,as one of the top content social e-commerce platforms in China,achieves outstanding performance under the COVID-19 pandemic.This paper tackles RED’s unique marketing and operating strategies,as well as its weaknesses that relate to operation and costs,and threats that relate to competitors and commercialization.Beside these disadvantages,profitable opportunities also arise from internal and external environment.At the end,the paper provides suggestions for capturing profitable opportunities under the pandemic and Chinese new regulations on cross-border e-commerce.展开更多
This study takes Binchuan County grape industry as the research point,on the basis of SWOT analysis in e-commerce grape industry resources in Binchuan County,combined with AHP quantitative analysis method,used Delphi ...This study takes Binchuan County grape industry as the research point,on the basis of SWOT analysis in e-commerce grape industry resources in Binchuan County,combined with AHP quantitative analysis method,used Delphi method gives the factors weights and scores from the experts.And used the fourdimensional strategic center coordinates location of gravity,determine the strategy orientation angle.Come to conclusion that the strategies of implementation e-commerce of grape industry in Binchuan County should be opportunity type,and then put forward strategic suggestions.展开更多
With the conclusion of the novel coronavirus pandemic and the increasingly complex market environment,China’s cross-border e-commerce has entered a new phase of development.The external landscape is evolving rapidly,...With the conclusion of the novel coronavirus pandemic and the increasingly complex market environment,China’s cross-border e-commerce has entered a new phase of development.The external landscape is evolving rapidly,and there is a gradual improvement in laws and regulations governing cross-border e-commerce,coupled with increased government support.Despite the impact of the COVID-19 pandemic on the market economy,overall development has been steadily improving.The Internet population is expanding,the online retail market is experiencing rapid growth,the consumption structure is undergoing transformation and upgrading,and the e-commerce market is demonstrating significant potential.The advancement of technologies such as big data,artificial intelligence,blockchain,and supply chain has provided more efficient operational support for the cross-border e-commerce industry.Against the backdrop of the emergence of new forms of cross-border e-commerce in China post-pandemic,this paper utilizes the PEST model to analyze the macro environment of cross-border e-commerce in China and project its future development trends.展开更多
文摘With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.
基金This project was supported by China Postdoctoral Science Foundation (2005037506) and the National Natural ScienceFoundation of China (70472029)
文摘In e-commerce the multidimensional data analysis based on the Web data needs integrating various data sources such as XML data and relational data on the conceptual level. A conceptual data description approach to multidimensional data model the UML galaxy diagram is presented in order to conduct multidimensional data analysis for multiple subjects. The approach is illuminated using a case of 2_roots UML galaxy diagram that takes marketing analysis of TV products involved one retailer and several suppliers into consideration.
文摘Statistics is a powerful tool for data measurement. Statistical techniques properly planned and executed give meaning to meaningless data. The difficulty some practitioners encounter hinges on the fact that though there are numerous statistical methods available for use in analysis, the extent of their understanding and ease of using these tools for analysis is limited. This study has twofold purpose: firstly, literature on categorical data commonly used in research w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> reviewed</span><span style="font-family:Verdana;">;</span><span style="font-family:""><span style="font-family:Verdana;"> next, we reported the results of a survey we designed and executed. Categorical data was collected via questionnaire and analyzed to serve as a backbone of the robustness of categorical data. Several conjec</span><span style="font-family:Verdana;">tures about the independence of the socio-economic variables and e-commence</span><span style="font-family:Verdana;"> were tested. Some of the factors influencing patronage of e-commerce were </span><span style="font-family:Verdana;">identified. It is clear from the literature that as one’s academic qualification</span><span style="font-family:Verdana;"> improves</span></span><span style="font-family:Verdana;">, </span><span style="font-family:""><span style="font-family:Verdana;">there is an associated improvement in their preference for e-commerce, but the results revealed otherwise. Size of family was found to influence e-commerce. Both income and social status positively affected pa</span><span style="font-family:Verdana;">tronage in e-commerce. Gender also appeared to affect patronage in e-commerce</span><span style="font-family:Verdana;">. 62.3% of staff had patronized e-commerce</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> This shows that e-commerce patronage was gradually increasing. It is therefore our considered view that policy documents regulating and monitoring the use of e-commerce be developed to increase e-commerce participation across the globe</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It is also recommended that the bottlenecks which obstruct patronage in e-commence be addressed so that a lot more staff will develop a positive attitude towards e-commerce.
文摘Under the background of national development strategy in the new era,cross-border e-commerce with the help of Internet platfbnn can realize the interconnection between producers and consumers,and gradually expand the influence of international trade.Based on big data technology,this paper builds an industry chain with cross-border e-commerce members'participation,and analyzes the specific application of big data in the product support,internal operation,external marketing,logistics service and service evaluation of cross-border e-commerce industry chain.The purpose is to effectively promote the healthy development of cross-border e-commerce and improve China's trade and economic level.
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
基金funded by the Taiwan Comprehensive University System and the National Science and Technology Council of Taiwan under grant number NSTC 111-2410-H-019-006-MY3Additionally,this work was financially/partially supported by the Advanced Institute of Manufacturing with High-tech Innovations(AIM-HI)from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education(MOE)in Taiwan+1 种基金the National Natural Science Foundation of China,No.62402444the Zhejiang Provincial Natural Science Foundation of China,No.LQ24F020012.
文摘AI applications have become ubiquitous,bringing significant convenience to various industries.In e-commerce,AI can enhance product recommendations for individuals and provide businesses with more accurate predictions for market strategy development.However,if the data used for AI applications is damaged or lost,it will inevitably affect the effectiveness of these AI applications.Therefore,it is essential to verify the integrity of e-commerce data.Although existing Provable Data Possession(PDP)protocols can verify the integrity of cloud data,they are not suitable for e-commerce scenarios due to the limited computational capabilities of edge servers,which cannot handle the high computational overhead of generating homomorphic verification tags in PDP.To address this issue,we propose PDP with Outsourced Tag Generation for AI-driven e-commerce,which outsources the computation of homomorphic verification tags to cloud servers while introducing a lightweight verification method to ensure that the tags match the uploaded data.Additionally,the proposed scheme supports dynamic operations such as adding,deleting,and modifying data,enhancing its practicality.Finally,experiments show that the additional computational overhead introduced by outsourcing homomorphic verification tags is acceptable compared to the original PDP.
文摘With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.
文摘This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.
文摘With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.
基金supported by the National Key Research and Development Program Project of China(Grant No.2023YFF0718003)the key research and development plan project of Yunnan Province(Grant No.202303AA080006).
文摘The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic response information under a strong noise background is a crucial scientific task to be addressed.To solve the noise suppression problem of the controlled-source electromagnetic method in strong interference areas,we propose an approach based on complex-plane 2D k-means clustering for data processing.Based on the stability of the controlled-source signal response,clustering analysis is applied to classify the spectra of different sources and noises in multiple time segments.By identifying the power spectra with controlled-source characteristics,it helps to improve the quality of the controlled-source response extraction.This paper presents the principle and workflow of the proposed algorithm,and demonstrates feasibility and effectiveness of the new algorithm through synthetic and real data examples.The results show that,compared with the conventional Robust denoising method,the clustering algorithm has a stronger suppression effect on common noise,can identify high-quality signals,and improve the preprocessing data quality of the controlledsource electromagnetic method.
文摘The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.
文摘Objective To identify core acupoint patterns and elucidate the molecular mechanisms of acupuncture for primary depressive disorder(PDD)through data mining and network analysis.Methods A comprehensive literature search was conducted across PubMed,Embase,Ovid Technologies(OVID),Web of Science,Cochrane Library,China National Knowledge Infrastructure(CNKI),China National Knowledge Infrastructure Database(VIP),Wanfang Data,and SinoMed Database from database foundation to January 31,2025,for clinical studies on acupuncture treatment of PDD.Descriptive statistics,high-frequency acupoint analysis,degree and betweenness centrality evaluation,and core acupoint prescription mining identified predominant therapeutic combinations for PDD.Network acupuncture was used to predict therapeutic target for the core acupoint prescription.Subsequent protein-protein interaction(PPI)network and molecular complex detection(MCODE)analyses were conducted to identify the key targets and functional modules.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses explored the underlying biological mechanisms of the core acupoint prescription in treating PDD.Results A total of 57 acupoint prescriptions underwent systematic analysis.The core therapeutic combinations comprised Baihui(GV20),Yintang(GV29),Neiguan(PC6),Hegu(LI4),and Shenmen(HT7).Network acupuncture analysis identified 88 potential therapeutic targets(79 overlapping with PDD),while PPI network analysis revealed central regulatory nodes,including interleukin(IL)-6,IL-1β,tumor necrosis factor(TNF)-α,toll-like receptor 4(TLR4),IL-10,brain-derived neurotrophic factor(BDNF),transforming growth factor(TGF)-β1,C-XC motif chemokine ligand 10(CXCL10),mitogen-activated protein kinase 3(MAPK3),and nitric oxide synthase 1(NOS1).MCODE-based modular analysis further elucidated three functionally coherent clusters:inflammation-homeostasis(score=6.571),plasticity-neurotransmission(score=3.143),and oxidative stress(score=3.000).GO and KEGG analyses demonstrated significant enrichment of the MAPK,phosphoinositide 3-kinase/protein kinase B(PI3K/Akt),and hypoxia-inducible factor(HIF)-1 signaling pathways.These mechanistic insights suggested that the antidepressant effects mediated through mechanisms of neuroinflammatory regulation,neuroplasticity restoration,and immune-oxidative stress homeostasis.Conclusion This study reveals that acupuncture alleviates depression through a multi-level mechanism,primarily involving the neuroinflammation suppression,neuroplasticity enhancement,and oxidative stress regulation.These findings systematically clarify the underlying mechanisms of acupuncture’s antidepressant effects and identify novel therapeutic targets for further mechanistic research.
基金supported in part by the National Key Research and Development Program of China under Grant 2024YFE0200600in part by the National Natural Science Foundation of China under Grant 62071425+3 种基金in part by the Zhejiang Key Research and Development Plan under Grant 2022C01093in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LR23F010005in part by the National Key Laboratory of Wireless Communications Foundation under Grant 2023KP01601in part by the Big Data and Intelligent Computing Key Lab of CQUPT under Grant BDIC-2023-B-001.
文摘Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.
文摘In section‘Track decoding’of this article,one of the paragraphs was inadvertently missed out after the text'…shows the flow diagram of the Tr2-1121 track mode.'The missed paragraph is provided below.
基金supported by a project funded by the Hebei Provincial Central Guidance Local Science and Technology Development Fund(236Z7714G)。
文摘Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).
基金by the National Key Research and Development Program of China(2023YFC3303701-02 and 2024YFC3306701)the National Natural Science Foundation of China(T2425014 and 32270667)+3 种基金the Natural Science Foundation of Fujian Province of China(2023J06013)the Major Project of the National Social Science Foundation of China granted to Chuan-Chao Wang(21&ZD285)Open Research Fund of State Key Laboratory of Genetic Engineering at Fudan University(SKLGE-2310)Open Research Fund of Forensic Genetics Key Laboratory of the Ministry of Public Security(2023FGKFKT07).
文摘The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.
基金The author would like to thank the anonymous reviewers for their valuable comments and suggestions, which are very helpful in improving the paper. This research was supported by Social Science Foundation of Hebei Province (HB09BYJ050), Major Planning Project of Social Science of Baoding (200901009) and Youth Foundation of Hebei College of Finance (JY200910).
文摘With SPSS16.0 software, this paper chooses the statistical data of 11 cities in Hebei province to empirically study the agri-food logistics capability based on the method of factor analysis, and finally obtains the ranking of the 11 cities. It shows that, factor-cluster analysis is an effective method to analyze the logistics capability of agri-food. It can simplify the original complicated problem and lead to an objective, reliable and convincing conclusion.
文摘Due to the impact of the COVID-19 pandemic,e-commerce and social media pervade people’s daily life,while offline businesses suffer from loss from traffic.In this paper the SWOT analysis method is employed to examine the strengths,weaknesses,opportunities,and threats for RED,which,as one of the top content social e-commerce platforms in China,achieves outstanding performance under the COVID-19 pandemic.This paper tackles RED’s unique marketing and operating strategies,as well as its weaknesses that relate to operation and costs,and threats that relate to competitors and commercialization.Beside these disadvantages,profitable opportunities also arise from internal and external environment.At the end,the paper provides suggestions for capturing profitable opportunities under the pandemic and Chinese new regulations on cross-border e-commerce.
文摘This study takes Binchuan County grape industry as the research point,on the basis of SWOT analysis in e-commerce grape industry resources in Binchuan County,combined with AHP quantitative analysis method,used Delphi method gives the factors weights and scores from the experts.And used the fourdimensional strategic center coordinates location of gravity,determine the strategy orientation angle.Come to conclusion that the strategies of implementation e-commerce of grape industry in Binchuan County should be opportunity type,and then put forward strategic suggestions.
基金2023 National College Students’Innovation and Entrepreneurship Training Program“Research on Big Data Analysis and Application of Cross-Border E-commerce in the Context of Digital Trade”(Project number:202310621323)。
文摘With the conclusion of the novel coronavirus pandemic and the increasingly complex market environment,China’s cross-border e-commerce has entered a new phase of development.The external landscape is evolving rapidly,and there is a gradual improvement in laws and regulations governing cross-border e-commerce,coupled with increased government support.Despite the impact of the COVID-19 pandemic on the market economy,overall development has been steadily improving.The Internet population is expanding,the online retail market is experiencing rapid growth,the consumption structure is undergoing transformation and upgrading,and the e-commerce market is demonstrating significant potential.The advancement of technologies such as big data,artificial intelligence,blockchain,and supply chain has provided more efficient operational support for the cross-border e-commerce industry.Against the backdrop of the emergence of new forms of cross-border e-commerce in China post-pandemic,this paper utilizes the PEST model to analyze the macro environment of cross-border e-commerce in China and project its future development trends.