期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Generalized(2+1)-Dimensional Sharma-Tasso-Olver-Burgers Equation:Dispersionless Decompositions and Twisted Solitons
1
作者 Hui-Ling Wu Sen-Yue Lou 《Chinese Physics Letters》 2025年第9期14-17,共4页
We presents a generalized(2+1)-dimensional Sharma-Tasso-Olver-Burgers(STOB)equation,unifying dissipative and dispersive wave dynamics.By introducing an auxiliary potential𝑦as a new space variable and employing... We presents a generalized(2+1)-dimensional Sharma-Tasso-Olver-Burgers(STOB)equation,unifying dissipative and dispersive wave dynamics.By introducing an auxiliary potential𝑦as a new space variable and employing a simpler deformation algorithm,we deform the(1+1)-dimensional STOB model to higher dimensions.The resulting equation is proven Lax-integrable via introducing strong and weak Lax pairs.Traveling wave solutions of the(2+1)-dimensional STOB equation are derived through an ordinary differential equation reduction,with implicit solutions obtained for a special case.Crucially,we demonstrate that the system admits dispersionless decompositions into two types:Case 1 yields non-traveling twisted kink and bell solitons,while Case 2 involves complex implicit functions governed by cubic-algebraic constraints.Numerical visualizations reveal novel anisotropic soliton structures,and the decomposition methodology is shown to generalize broadly to other higher dimensional dispersionless decomposition solvable integrable systems. 展开更多
关键词 dispersionless decompositions twisted solitons generalized dimensional auxiliary potential strong weak lax pairstraveling wave solutions ordinary differential equation re dissipative dispersive wave dynamicsby lax integrable
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部