To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un...To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.展开更多
Suffusion in broadly graded granular soils is caused by fluid flow and is a typical cause of geo-hazards.Previous studies of it have mainly focused on suffusion in homogeneous soil specimens.In this study,the coupled ...Suffusion in broadly graded granular soils is caused by fluid flow and is a typical cause of geo-hazards.Previous studies of it have mainly focused on suffusion in homogeneous soil specimens.In this study,the coupled discrete element method(DEM)and computational fluid dynamics(CFD)approach is adopted to model suffusion in multi-layered soils with different fines contents,and soils with one or more impermeable zones.The parameters of the CFD-DEM model are first calibrated with the classic Ergun test and a good match with experiment is obtained.Then suffusion in multi-layered soils with different fines contents and impermeable zones is simulated and discussed.The simulation results show that,for soils with multiple layers,the cumulative eroded mass is mainly determined by the fines content of the bottom layer.In general,the higher the fines content of the bottom soil layer,the higher the cumulative eroded mass.In addition,suffusion is more severe if the fines content of the layer above is decreased.Impermeable zones inside soil specimens can increase the flow velocity around those zones,facilitating the migration of fine particles and intensifying suffusion.展开更多
The collapse of granular material in fluids is a prevalent phenomenon in both natural and industrial processes,displaying a notable sensitivity to initial configuration of the system.This study is specifically oriente...The collapse of granular material in fluids is a prevalent phenomenon in both natural and industrial processes,displaying a notable sensitivity to initial configuration of the system.This study is specifically oriented towards falling process of collapsing material under various fluid conditions,employing the computational fluid dynamics-discrete element method(CFD-DEM)to primarily investigate the dynamics and scaling laws of deposit morphology of collapsed material.Through a comprehensive analysis of particle sedimentation in fluids,we introduce a refined inertial characteristic time for granular collapse within the inertial regime.Subsequently,we propose modifications to conventional fluid-particle density ratio and Reynolds number,aiming to enhance the accuracy of depicting collapse dynamics and identifying flow regimes across diverse column heights and fluid conditions.Finally,we construct a phase diagram of flow regimes using modified dimensionless numbers,emphasizing the role of column height in transition between viscous and inertial regimes.These parameters demonstrate enhanced relevance in governing the collapse of immersed granular columns,thereby contributing to a more nuanced understanding of fluid-particle interations in dense granular flows under different regimes.展开更多
Particle separation from gases is an important unit operation in manifold industrial applications,such as those conducted in environmental protection.For analysis of particle penetration and separation in fiber filter...Particle separation from gases is an important unit operation in manifold industrial applications,such as those conducted in environmental protection.For analysis of particle penetration and separation in fiber filters,standard dust particles (Al2O3)were loaded in the gas flow of a filter test facility and deposited within new and uncharged fiber filters.The loaded filters were analyzed by micro-computer tomography and scanning electron microscopy.Three-dimensional tomograms of the samples show an exponential decay of the penetration depth of the particles.This dependency is confirmed by simulations conducted using the discrete element method coupled with computational fluid dynamics within unloaded and loaded fiber structures.Microscale processes of particle separation at the fibers as well as the filtration efficiency and time-dependent filtering process are derived from the simuiations.Local particle clustering in the filter medium and partial filter clogging are thus identified.展开更多
Voidage is important in determining the hydrodynamic behavior of a fluidized bed and estimating the drag force,Exact calculation methods are limited,especially in terms of determining the intersection bf a particle an...Voidage is important in determining the hydrodynamic behavior of a fluidized bed and estimating the drag force,Exact calculation methods are limited,especially in terms of determining the intersection bf a particle and cell,This paper presents a method of directly calculating voidage.First,a judgment criterion of particle-cell overlap,which relies on the relationship of the distance from the particle to a cell face,edge,or vertex,is proposed.Eight cases of the overlap volume of a particle and cell are then ascribed to a unified formula in the framework of the cuboid cell,This formula relies on the volume of two kinds of segments named the hemispherical segment and quarter-spherical segment.The presented method is validated by calculating the voidage of simple cubic packing.Moreover,a three-dimensional fluidized bed with large particles is simulated and the results of numerical simulation are compared against experimental and simulation results reported in the literature.All numerical results are in good agreement with corresponding experimental data,and demonstrate the accuracy and reliability of the presented method in the three-dimensional simulation of fluidized beds.展开更多
The extended discrete element method (XDEM) multi-physics and multi-scale simulation platform is being developed at the Institute of Computational Engineering, the University of Luxembourg. The platform is an advanced...The extended discrete element method (XDEM) multi-physics and multi-scale simulation platform is being developed at the Institute of Computational Engineering, the University of Luxembourg. The platform is an advanced multi-physics simulation technology that combines flexibility and versatility to establish the next generation of multi-physics and multi-scale simulation tools. For this purpose, the simulation framework relies on coupling various predictive tools based on an Eulerian and Lagrangian approach. The Euleria n approach represents the wide field of con tinuum models;the Lagra ngian approach is perfect for characterising discrete phases. Continuum models thus include classical simulation tools, such as computational fluid dynamics simulation and finite element analysis, while an extended configuration of the classical discrete element method addresses the discrete (e.g., particulate) phase. Apart from predicting the trajectories of in dividual particles, XDEM-suite extends the application of the XDEM to estimating the thermodynamic state of each particle using advanced and optimised algorithms. The thermodynamic state may include temperature and species distributions due to chemical reaction and external heat sources. Hence, coupling these extended features with either computational fluid dynamics simulation or finite element analysis opens a wide range of applications as diverse as pharmaceuticals, agriculture, food processing, mining, construction and agricultural machinery, metals manufacturing, energy production and systems biology.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2023YJS053)the National Natural Science Foundation of China(Grant No.52278386).
文摘To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.
基金This work is supported by the Research Grants Council(RGC)of Hong Kong(No.15226322)the National Natu‐ral Science Foundation of China(No.42207210).
文摘Suffusion in broadly graded granular soils is caused by fluid flow and is a typical cause of geo-hazards.Previous studies of it have mainly focused on suffusion in homogeneous soil specimens.In this study,the coupled discrete element method(DEM)and computational fluid dynamics(CFD)approach is adopted to model suffusion in multi-layered soils with different fines contents,and soils with one or more impermeable zones.The parameters of the CFD-DEM model are first calibrated with the classic Ergun test and a good match with experiment is obtained.Then suffusion in multi-layered soils with different fines contents and impermeable zones is simulated and discussed.The simulation results show that,for soils with multiple layers,the cumulative eroded mass is mainly determined by the fines content of the bottom layer.In general,the higher the fines content of the bottom soil layer,the higher the cumulative eroded mass.In addition,suffusion is more severe if the fines content of the layer above is decreased.Impermeable zones inside soil specimens can increase the flow velocity around those zones,facilitating the migration of fine particles and intensifying suffusion.
基金the National Natural Science Foundation of China(grant Nos.12272158 and 11872028).
文摘The collapse of granular material in fluids is a prevalent phenomenon in both natural and industrial processes,displaying a notable sensitivity to initial configuration of the system.This study is specifically oriented towards falling process of collapsing material under various fluid conditions,employing the computational fluid dynamics-discrete element method(CFD-DEM)to primarily investigate the dynamics and scaling laws of deposit morphology of collapsed material.Through a comprehensive analysis of particle sedimentation in fluids,we introduce a refined inertial characteristic time for granular collapse within the inertial regime.Subsequently,we propose modifications to conventional fluid-particle density ratio and Reynolds number,aiming to enhance the accuracy of depicting collapse dynamics and identifying flow regimes across diverse column heights and fluid conditions.Finally,we construct a phase diagram of flow regimes using modified dimensionless numbers,emphasizing the role of column height in transition between viscous and inertial regimes.These parameters demonstrate enhanced relevance in governing the collapse of immersed granular columns,thereby contributing to a more nuanced understanding of fluid-particle interations in dense granular flows under different regimes.
文摘Particle separation from gases is an important unit operation in manifold industrial applications,such as those conducted in environmental protection.For analysis of particle penetration and separation in fiber filters,standard dust particles (Al2O3)were loaded in the gas flow of a filter test facility and deposited within new and uncharged fiber filters.The loaded filters were analyzed by micro-computer tomography and scanning electron microscopy.Three-dimensional tomograms of the samples show an exponential decay of the penetration depth of the particles.This dependency is confirmed by simulations conducted using the discrete element method coupled with computational fluid dynamics within unloaded and loaded fiber structures.Microscale processes of particle separation at the fibers as well as the filtration efficiency and time-dependent filtering process are derived from the simuiations.Local particle clustering in the filter medium and partial filter clogging are thus identified.
文摘Voidage is important in determining the hydrodynamic behavior of a fluidized bed and estimating the drag force,Exact calculation methods are limited,especially in terms of determining the intersection bf a particle and cell,This paper presents a method of directly calculating voidage.First,a judgment criterion of particle-cell overlap,which relies on the relationship of the distance from the particle to a cell face,edge,or vertex,is proposed.Eight cases of the overlap volume of a particle and cell are then ascribed to a unified formula in the framework of the cuboid cell,This formula relies on the volume of two kinds of segments named the hemispherical segment and quarter-spherical segment.The presented method is validated by calculating the voidage of simple cubic packing.Moreover,a three-dimensional fluidized bed with large particles is simulated and the results of numerical simulation are compared against experimental and simulation results reported in the literature.All numerical results are in good agreement with corresponding experimental data,and demonstrate the accuracy and reliability of the presented method in the three-dimensional simulation of fluidized beds.
文摘The extended discrete element method (XDEM) multi-physics and multi-scale simulation platform is being developed at the Institute of Computational Engineering, the University of Luxembourg. The platform is an advanced multi-physics simulation technology that combines flexibility and versatility to establish the next generation of multi-physics and multi-scale simulation tools. For this purpose, the simulation framework relies on coupling various predictive tools based on an Eulerian and Lagrangian approach. The Euleria n approach represents the wide field of con tinuum models;the Lagra ngian approach is perfect for characterising discrete phases. Continuum models thus include classical simulation tools, such as computational fluid dynamics simulation and finite element analysis, while an extended configuration of the classical discrete element method addresses the discrete (e.g., particulate) phase. Apart from predicting the trajectories of in dividual particles, XDEM-suite extends the application of the XDEM to estimating the thermodynamic state of each particle using advanced and optimised algorithms. The thermodynamic state may include temperature and species distributions due to chemical reaction and external heat sources. Hence, coupling these extended features with either computational fluid dynamics simulation or finite element analysis opens a wide range of applications as diverse as pharmaceuticals, agriculture, food processing, mining, construction and agricultural machinery, metals manufacturing, energy production and systems biology.