期刊文献+
共找到419,347篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanisms of Pore-Grain Boundary Interactions Influencing Nanoindentation Behavior in Pure Nickel: A Molecular Dynamics Study
1
作者 Chen-Xi Hu Wu-Gui Jiang +1 位作者 Jin Wang Tian-Yu He 《Computers, Materials & Continua》 2026年第1期368-388,共21页
THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics(MD)simulations,with a particular focus on the novel interplay between c... THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics(MD)simulations,with a particular focus on the novel interplay between crystallographic orientation,grain boundary(GB)proximity,and pore characteristics(size/location).This study compares single-crystal nickel models along[100],[110],and[111]orientations with equiaxed polycrystalline models containing 0,1,and 2.5 nm pores in surface and subsurface configurations.Our results reveal that crystallographic anisotropy manifests as a 24.4%higher elastic modulus and 22.2%greater hardness in[111]-oriented single crystals compared to[100].Pore-GB synergistic effects are found to dominate the deformation behavior:2.5 nm subsurface pores reduce hardness by 25.2%through stress concentration and dislocation annihilation at GBs,whereas surface pores enable mechanical recovery via accelerated dislocation generation post-collapse.Additionally,size-dependent deformation regimes were identified,with 1 nm pores inducing negligible perturbation due to rapid atomic rearrangement,in contrast with persistent softening in 2.5 nm pores.These findings establish atomic-scale design principles for defect engineering in nickel-based aerospace components,demonstrating how crystallographic orientation,pore configuration,and GB interactions collectively govern nanoindentation behavior. 展开更多
关键词 Pure nickel NANOINDENTATION molecular dynamics PORE grain boundary
在线阅读 下载PDF
Ultrafast Sulfur Redox Dynamics Enabled by a PPy@N‑TiO_(2) Z‑Scheme Heterojunction Photoelectrode for Photo‑Assisted Lithium–Sulfur Batteries
2
作者 Fei Zhao Yibo He +6 位作者 Xuhong Li Ke Yang Shuo Chen Yuanzhi Jiang Xue‑Sen Wang Chunyuan Song Xuqing Liu 《Nano-Micro Letters》 2026年第3期445-462,共18页
Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implem... Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implementation remains a significant challenge.Herein,we construct a free-standing polymer–inorganic hybrid photoelectrode with a direct Z-scheme heterostructure to develop high-efficiency PALSBs.Specifically,polypyrrole(PPy)is in situ vapor-phase polymerized on the surface of N-doped TiO_(2) nanorods supported on carbon cloth(N-TiO_(2)/CC),thereby forming a well-defined p–n heterojunction.This architecture efficiently facilitates the carrier separation of photo-generated electron–hole pairs and significantly enhances carrier transport by creating a built-in electric field.Thus,the PPy@N-TiO_(2)/CC can simultaneously act as a photocatalyst and an electrocatalyst to accelerate the reduction and evolution of sulfur,enabling ultrafast sulfur redox dynamics,as convincingly validated by both theoretical simulations and experimental results.Consequently,the PPy@N-TiO_(2)/CC PALSB achieves a high discharge capacity of 1653 mAh g−1,reaching 98.7%of the theoretical value.Furthermore,5 h of photo-charging without external voltage enables the PALSB to deliver a discharge capacity of 333 mAh g−1,achieving dual-mode energy harvesting capabilities.This work successfully integrates solar energy conversion and storage within a rechargeable battery system,providing a promising strategy for sustainable energy storage technologies. 展开更多
关键词 Photo-assisted lithium-sulfur batteries Z-scheme heterojunction Electrocatalysis Photocatalysis Sulfur redox dynamics
在线阅读 下载PDF
Graph neural networks unveil universal dynamics in directed percolation
3
作者 Ji-Hui Han Cheng-Yi Zhang +3 位作者 Gao-Gao Dong Yue-Feng Shi Long-Feng Zhao Yi-Jiang Zou 《Chinese Physics B》 2025年第8期540-545,共6页
Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investig... Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains. 展开更多
关键词 graph neural networks non-equilibrium phase transition directed percolation model nonlinear dynamics
原文传递
Enabling Intrinsic Antiferroelectricity in Two-dimensional NbOCl_(2):Molecular Dynamics Simulations based on Deep Learning Interatomic Potential
4
作者 Jiawei Mao Yinglu Jia +2 位作者 Gaoyang Gou Shi Liu Xiao Cheng Zeng 《Chinese Physics Letters》 2026年第1期156-178,共23页
Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely orien... Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely oriented.Using NbOCl_(2) monolayer with competing ferroelectric(FE)and antiferroelectric(AFE)phases as a 2D material platform,we demonstrate the emergence of intrinsic antiferroelectricity in NbOCl_(2) monolayer under experimentally accessible shear strain,along with new functionality associated with electric field-induced AFE-to-FE phase transition.Specifically,the complex configuration space accommodating FE and AFE phases,polarization switching kinetics,and finite temperature thermodynamic properties of 2D NbOCl_(2) are all accurately predicted by large-scale molecular dynamics simulations based on deep learning interatomic potential model.Moreover,room temperature stable antiferroelectricity with low polarization switching barrier and one-dimensional collinear polarization arrangement is predicted in shear-deformed NbOCl_(2) monolayer.The transition from AFE to FE phase in 2D NbOCl_(2) can be triggered by a low critical electric field,leading to a double polarization–electric(P–E)loop with small hysteresis.A new type of optoelectronic device composed of AFE-NbOCl_(2) is proposed,enabling electric“writing”and nonlinear optical“reading”logical operation with fast operation speed and low power consumption. 展开更多
关键词 d monolayers local dipoles nonequivalent sublattices intrinsic antiferroelectricity two dimensional nbocl d antiferroelectricity experimentally accessible shear strainalong molecular dynamics simulations
原文传递
Mechanical sensing migrasomes attenuated chronic infectious bone destruction via controlling mitochondria DNA dynamics
5
作者 Meilian Cai Chenyang Xing +5 位作者 Peng Chen Shuai Lin Mingzhao Li Han Zhang Hu Zhao Ruili Yang 《Nano Research》 2026年第1期748-764,共17页
Mesenchymal stem cells(MSCs),which are mechanosensitive cells,mediate the cells crosstalk in response to mechanical force,thereby playing a crucial role in bone homeostasis.Migrasomes serve as an important mediator fo... Mesenchymal stem cells(MSCs),which are mechanosensitive cells,mediate the cells crosstalk in response to mechanical force,thereby playing a crucial role in bone homeostasis.Migrasomes serve as an important mediator for cellular communication.However,whether the mechanical stimulus regulates the biology and property of migrasomes on bone metabolism remains unknown.This study shows that mechanical stimulus could promote MSCs to synthesize and secrete migrasomes,which could significantly alleviate chronic infectious bone destruction in periodontal tissue by inhibiting osteoclastic differentiation of macrophage and reestablishing local immune microenvironment.Mechanistically,miR-29b-3p is more abundant in migrasomes from mechanical force stimulated MSCs than in control ones.MiR-29b-3p blocks the activation of pyrin domain containing protein 3(NLRP3)and mitochondrial DNA(mtDNA)release by directly targeting on Tet1.Thus,mechanical sensing migrasomes inhibit osteoclast differentiation to alleviate inflammation induced bone destruction.These findings reveal that the mechanical stimulus controls the formation and properties of migrasomes,which provides a new biotechnological strategy for chronic infectious bone destruction intervention. 展开更多
关键词 mechanical force migrasomes Tet1 NLR family pyrin domain containing protein 3(NLRP3)inflammasome mitochondrial DNA dynamics
原文传递
Mitochondrial dynamics dysfunction and neurodevelopmental disorders:From pathological mechanisms to clinical translation
6
作者 Ziqi Yang Yiran Luo +5 位作者 Zaiqi Yang Zheng Liu Meihua Li Xiao Wu Like Chen Wenqiang Xin 《Neural Regeneration Research》 2026年第5期1926-1946,共21页
Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Alt... Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Although these conditions differ in clinical presentation, they share fundamental pathological features that may stem from abnormal mitochondrial dynamics and impaired autophagic clearance, which contribute to redox imbalance and oxidative stress in neurons. This review aimed to elucidate the relationship between mitochondrial dynamics dysfunction and neurodevelopmental disorders. Mitochondria are highly dynamic organelles that undergo continuous fusion and fission to meet the substantial energy demands of neural cells. Dysregulation of these processes, as observed in certain neurodevelopmental disorders, causes accumulation of damaged mitochondria, exacerbating oxidative damage and impairing neuronal function. The phosphatase and tensin homolog-induced putative kinase 1/E3 ubiquitin-protein ligase pathway is crucial for mitophagy, the process of selectively removing malfunctioning mitochondria. Mutations in genes encoding mitochondrial fusion proteins have been identified in autism spectrum disorders, linking disruptions in the fusion-fission equilibrium to neurodevelopmental impairments. Additionally, animal models of Rett syndrome have shown pronounced defects in mitophagy, reinforcing the notion that mitochondrial quality control is indispensable for neuronal health. Clinical studies have highlighted the importance of mitochondrial disturbances in neurodevelopmental disorders. In autism spectrum disorders, elevated oxidative stress markers and mitochondrial DNA deletions indicate compromised mitochondrial function. Attention-deficit/hyperactivity disorder has also been associated with cognitive deficits linked to mitochondrial dysfunction and oxidative stress. Moreover, induced pluripotent stem cell models derived from patients with Rett syndrome have shown impaired mitochondrial dynamics and heightened vulnerability to oxidative injury, suggesting the role of defective mitochondrial homeostasis in these disorders. From a translational standpoint, multiple therapeutic approaches targeting mitochondrial pathways show promise. Interventions aimed at preserving normal fusion-fission cycles or enhancing mitophagy can reduce oxidative damage by limiting the accumulation of defective mitochondria. Pharmacological modulation of mitochondrial permeability and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, an essential regulator of mitochondrial biogenesis, may also ameliorate cellular energy deficits. Identifying early biomarkers of mitochondrial impairment is crucial for precision medicine, since it can help clinicians tailor interventions to individual patient profiles and improve prognoses. Furthermore, integrating mitochondria-focused strategies with established therapies, such as antioxidants or behavioral interventions, may enhance treatment efficacy and yield better clinical outcomes. Leveraging these pathways could open avenues for regenerative strategies, given the influence of mitochondria on neuronal repair and plasticity. In conclusion, this review indicates mitochondrial homeostasis as a unifying therapeutic axis within neurodevelopmental pathophysiology. Disruptions in mitochondrial dynamics and autophagic clearance converge on oxidative stress, and researchers should prioritize validating these interventions in clinical settings to advance precision medicine and enhance outcomes for individuals affected by neurodevelopmental disorders. 展开更多
关键词 autophagic clearance autism spectrum disorders cellular homeostasis fusion and fission mitochondrial dynamics MITOPHAGY neural regeneration neuronal energy metabolism neurodevelopmental disorders oxidative stress
暂未订购
Perforation Dynamics and Directional Motion of Janus Vesicles under the Coupled Effects of Flow and Electric Fields
7
作者 Yi-Ning Zhang Yun-Long Han +1 位作者 Jia-Wei Li Tong-Fei Shi 《Chinese Journal of Polymer Science》 2025年第11期1939-1949,I0005,共12页
Janus vesicles,unique nanostructures,have attracted significant attention for their diverse applications in biomedical and microfluidic systems.In practical micro-nano systems,flow and electric fields often coexist,an... Janus vesicles,unique nanostructures,have attracted significant attention for their diverse applications in biomedical and microfluidic systems.In practical micro-nano systems,flow and electric fields often coexist,and the perforation dynamics of Janus vesicles exhibit complex motion due to their synergistic effects.Studying Janus vesicle perforation dynamics under the combined influence of fluid flow and electric fields provides valuable insights into their applications in drug delivery,catalyst delivery,and controlled release.This study focuses on the perforation dynamics and directional motion of Janus vesicles in microchannels,emphasizing how electric field strength and charge distribution on the membrane influence vesicle migration,deformation,and trajectories.Results show that when electromagnetic forces and flow-driven forces align,increasing electric field strength promotes vesicle migration and perforation.Vesicle migration is correlated with charge distribution on the membrane,with broader distributions resulting in more pronounced migration.When electric field strength remains constant,charge distribution has little effect on vesicle deformation.Conversely,when electromagnetic forces and flow-driven forces oppose,increasing electric field strength inhibits vesicle migration.At a specific potential difference,charged vesicles cease movement before reaching the perforation site,indicating the critical potential for perforation.The study also reveals that the direction of the electric field significantly affects vesicle migration direction.Adjusting potential values at microchannel boundaries can control the directional movement of Janus vesicles.This research provides new insights into Janus vesicle behavior in complex environments and deepens understanding of their potential as drug carriers for delivery and targeted therapy. 展开更多
关键词 Janus vesicles Perforation dynamics MICROFLUIDICS
原文传递
Direct observation of ultrafast magnetization dynamics in Co/Ni bit patterned media by time-resolved scanning Kerr microscopy
8
作者 Wei Zhang Wei He +3 位作者 Qin-Li Lv Jian-Wang Cai Xiang-Qun Zhang Zhao-Hua Cheng 《Chinese Physics B》 2025年第4期579-583,共5页
Bit patterned recording(BPR)has attracted much attention due to its promising potential in achieving high densities in magnetic storage devices.The materials with strong perpendicular magnetic anisotropy(PMA)are alway... Bit patterned recording(BPR)has attracted much attention due to its promising potential in achieving high densities in magnetic storage devices.The materials with strong perpendicular magnetic anisotropy(PMA)are always preferred in designing the BPR.Here,the patterned Co/Ni multilayers showing d-d hybridization induced PMA was studied.In particular,we record the ultrafast spin dynamics by means of time-resolved scanning magneto-optical Kerr effect(TRMOKE)microscopy.We are able to acquire the“snapshot”magnetic maps of the sample surface because of both the femtosecond temporal and submicrometer spatial resolution in our TRMOKE microscopy.Furthermore,the spatially inhomogeneous ultrafast demagnetization was observed in experiment,and this has been evidenced by simulations. 展开更多
关键词 ultrafast spin dynamics magneto-optical Kerr effect micromagnetic simulations
原文传递
Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation
9
作者 Jinqi Yang Xiaoxiang Hu +5 位作者 Yuanyuan Zhang Lingyu Zhao Chunlin Yue Yuan Cao Yangyang Zhang Zhenwen Zhao 《Chinese Chemical Letters》 2025年第5期354-359,共6页
The bioactive constituents found in natural products(NPs)are crucial in protein-ligand interactions and drug discovery.However,it is difficult to identify ligand molecules from complex NPs that specifically bind to ta... The bioactive constituents found in natural products(NPs)are crucial in protein-ligand interactions and drug discovery.However,it is difficult to identify ligand molecules from complex NPs that specifically bind to target protein,which often requires time-consuming and labor-intensive processes such as isolation and enrichment.To address this issue,in this study we developed a method that combines ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry(UHPLCESI-MS)with molecular dynamics(MD)simulation to identify and observe,rapidly and efficiently,the bioactive components in NPs that bind to specific protein target.In this method,a specific protein target was introduced online using a three-way valve to form a protein-ligand complex.The complex was then detected in real time using high-resolution MS to identify potential ligands.Based on our method,only 10 molecules from green tea(a representative natural product),including the commonly reported epigallocatechin gallate(EGCG)and epicatechin gallate(ECG),as well as the previously unreported eepicatechin(4β→8)-epigallocatechin 3-O-gallate(EC-EGCG)and eepiafzelechin 3-O-gallate-(4β→8)-epigallocatechin 3-O-gallate(EFG-EGCG),were screened out,which could form complexes with Aβ_(1-42)(a representative protein target),and could be potential ligands of Aβ_(1-42).Among of them,EC-EGCG demonstrated the highest binding free energy with Aβ_(1-42)(−68.54±3.82 kcal/mol).On the other side,even though the caffeine had the highest signal among green tea extracts,it was not observed to form a complex with Aβ_(1-42).Compared to other methods such as affinity selection mass spectrometry(ASMS)and native MS,our method is easy to operate and interpret the data.Undoubtedly,it provides a new methodology for potential drug discovery in NPs,and will accelerate the research on screening ligands for specific proteins from complex NPs. 展开更多
关键词 Natural products(NPS) Ligands screening Mass spectrum(MS) Molecular dynamic simulation(MDS) Post-column modification Amyloidβ-peptide 42(A_(β1-42)) Green tea
原文传递
Direct Dynamics Study on CH_2O + CH_3~·→ CHO + CH_4 Reaction 被引量:2
10
作者 Yan QI Ke Li HAN 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第4期565-568,共4页
It is still a formidable challenge to study CH2O + CH3·→ CHO + CH4 reaction in the gas phase by traditional dynamics, because of the large number of freedom degrees for the system. In this paper, direct dynam... It is still a formidable challenge to study CH2O + CH3·→ CHO + CH4 reaction in the gas phase by traditional dynamics, because of the large number of freedom degrees for the system. In this paper, direct dynamics, in which trajectories were run directly on the DFT potential energy surface, have been applied to the reaction, which gave a direct look in the reaction processes. Two sets of trajectories at different initial orientations of reactants and temperature have been simulated. And the detailed reaction mechanisms have been described. 展开更多
关键词 direct dynamics DFT reaction mechanism.
在线阅读 下载PDF
Dynamic micro-macro fatigue fracture under cyclic direct tensile impacts in brittle rocks 被引量:1
11
作者 LI Xiaozhao YAN Huaiwei +1 位作者 LUO Qiulin QI Chengzhi 《Journal of Mountain Science》 2025年第5期1848-1858,共11页
The fatigue fracture under cyclic dynamic direct tensions of brittle rock is an important mechanical characteristic index for the evaluation of geological disasters and underground engineering safety.However,most stud... The fatigue fracture under cyclic dynamic direct tensions of brittle rock is an important mechanical characteristic index for the evaluation of geological disasters and underground engineering safety.However,most studies focus on macroscopic fracture mechanical properties,and the mechanism linking the macroscopic fracture with the microcrack growth during the cyclic dynamic direct tensile loading of brittle rocks is rarely studied.In this paper,a micro-macro fracture model explaining the stress-strain constitutive relationship is established at the last impact failure after being subjected to multiple cyclic direct tensile impacts of brittle rocks.This model is based on the wing crack extension model under direct tensile loading,the quasi-static and dynamic fracture toughness relationship,the suggested crack rate and strain rate relationship,the relationship of damage and dynamic tensile fatigue life N,the relationship of dynamic fracture toughness and dynamic tensile fatigue life N.The variations of dynamic mechanical properties of rocks with dynamic tensile fatigue life for different initial crack sizes and angles within the rocks are further discussed.The compressive strength,elastic modulus,crack initiation stress,limit crack extension length and crack extension rate descend and the failure strain ascends with an increment of dynamic tensile fatigue life in rocks.This study's results provide help for the safety and stability of the underground surrounding rocks under blasting working or seismic disasters. 展开更多
关键词 Brittle rock Micro-macro fracture Cyclic dynamic direct tensile impact Fatigue life Constitutive relationship
原文传递
Robust leaderless time-varying formation control for unmanned aerial vehicle swarm system with Lipschitz nonlinear dynamics and directed switching topologies 被引量:7
12
作者 Yuhang KANG Yu KUANG +4 位作者 Jun CHENG Bangchu ZHANG Yahui QI Shaolei ZHOU Kai MAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期124-136,共13页
This paper tackles the robust leaderless Time-Varying Formation(TVF)control problem for the Unmanned Aerial Vehicle(UAV)swarm system with Lipschitz nonlinear dynamics,external disturbances and directed switching topol... This paper tackles the robust leaderless Time-Varying Formation(TVF)control problem for the Unmanned Aerial Vehicle(UAV)swarm system with Lipschitz nonlinear dynamics,external disturbances and directed switching topologies.In comparison with the previous achievements on formation control problems,the UAV swarm system with Lipschitz nonlinear dynamics can accomplish the pre-designed TVF while tracking a pre-given trajectory which is produced by a virtual leader UAV in the presence of external disturbances.Firstly,by applying the consensus theory,a TVF controller is developed with the local neighborhood status information,the errors of real time status of all UAVs,the expected formation configuration and the pre-given trajectory under directed switching topologies.Secondly,through a certain matrix variable substitution,the UAV swarm system formation control issue is transformed into a lower dimensional asymptotically stable control issue.Thirdly,by introducing the minimum dwell time,the design steps of formation control algorithm are further acquired.In the meantime,the stability of the UAV swarm system is analyzed through the construction of a piecewise continuous Lyapunov functional and via the Linear Matrix Inequalities(LMIs)method.Finally,the comparison results of a numerical simulation are elaborated to verify the validity of the proposed approach. 展开更多
关键词 directed switching topologies Lipschitz nonlinear dynamics Lyapunov functional Swarm system Time-Varying Formation(TVF) Unmanned Aerial Vehicle(UAV)
原文传递
Development of Non-Dissipative Direct Time Integration Method for Structural Dynamics Application 被引量:1
13
作者 Sun-Beom Kwon Jae-Myung Lee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第1期41-89,共49页
A direct time integration scheme based on Gauss-Legendre quadrature is proposed to solve problems in linear structural dynamics.The proposed method is a oneparameter non-dissipative scheme.Improved stability,accuracy,... A direct time integration scheme based on Gauss-Legendre quadrature is proposed to solve problems in linear structural dynamics.The proposed method is a oneparameter non-dissipative scheme.Improved stability,accuracy,and dispersion characteristics are achieved using appropriate values of the parameter.The proposed scheme has second-order accuracy with and without physical damping.Moreover,its stability,accuracy,and dispersion are analyzed.In addition,its performance is demonstrated by the two-dimensional scalar wave problem,the single-degree-of-freedom problem,two degrees-of-freedom spring system,and beam with boundary constraints.The wave propagation problem is solved in the high frequency wave regime to demonstrate the advantage of the proposed scheme.When the proposed scheme is applied to solve the wave problem,more accurate solutions than those of other methods are obtained by using the appropriate value of the parameter.For the single-degree-offreedom system,two degrees-of-freedom system,and the time responses of beam,the proposed scheme can be used effectively owing to its high accuracy and lower computational cost. 展开更多
关键词 Structural dynamics FINITE ELEMENTS direct time integration Gauss-Legendre QUADRATURE non-dissipative scheme.
在线阅读 下载PDF
Direct modeling for computational fluid dynamics 被引量:3
14
作者 Kun Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期303-318,共16页
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equ... All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numer- ical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require fur- ther expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional dis- tinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of con- structing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm develop- ment. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be mod- eled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of dis- crete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydro- dynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime. 展开更多
关键词 direct modeling Unified gas kinetic schemeBoltzmann equation - Kinetic collision model Non-equilibrium flows Navier-Stokes equations
在线阅读 下载PDF
Effect of TiB_(2) Nanoparticles on Microstructure and Mechanical Properties of Ni_(60)Cr_(21)Fe_(19) Alloy in Rapid Directional Solidification Process:Molecular Dynamics Study 被引量:1
15
作者 WANG Jin JIANG Wugui HU Chenxi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期575-588,共14页
Molecular dynamics(MD)simulations are employed to delve into the multifaceted effects of TiB_(2) nanoparticles on the intricate grain refinement mechanism,microstructural evolution,and tensile performance of Inconel 7... Molecular dynamics(MD)simulations are employed to delve into the multifaceted effects of TiB_(2) nanoparticles on the intricate grain refinement mechanism,microstructural evolution,and tensile performance of Inconel 718 superalloys during the rapid directional solidification.Specifically,the study focuses on elucidating the role of TiB2 nanoparticles in augmenting the nucleation rate during the rapid directional solidification process of Ni_(60)Cr_(21)Fe_(19) alloy system.Furthermore,subsequent tensile simulations are conducted to comprehensively evaluate the anisotropic behavior of tensile properties within the solidified microstructures.The MD results reveal that the incorporation of TiB₂nanoparticles during the rapid directional solidification of the Ni_(60)Cr_(21)Fe_(19) significantly enhances the average nucleation rate,escalating it from 1.27×10^(34)m^(-3)·s^(-1)to 2.55×10^(34)m^(-3)·s^(-1).Notably,within the face centered cube(FCC)structure,Ni atoms exhibit pronounced compositional segregation,and the solidified alloy maintains an exceptionally high dislocation density reaching up to 10^(16)m^(-2).Crucially,the rapid directional solidification process imparts a distinct microstructural anisotropy,leading to a notable disparity in tensile strength.Specifically,the tensile strength along the solidification direction is markedly superior to that perpendicular to it.This disparity arises from different deformation mechanisms under varying loading orientations.Tensile stress perpendicular to the solidification direction encourages the formation of smooth and organized mechanical twins.These twins act as slip planes,enhancing dislocation mobility and thereby improving stress relaxation and dispersion.Moreover,the results underscore the profound strengthening effect of TiB_(2) nanoparticles,particularly in enhancing the tensile strength along the rapid directional solidification direction. 展开更多
关键词 TiB_(2) nanoparticle rapid directional solidification microstructure evolution molecular dynamics
在线阅读 下载PDF
All-Atom Direct Folding Simulation for Proteins Using the Accelerated Molecular Dynamics in Implicit Solvent Model 被引量:1
16
作者 李宗超 段莉莉 +1 位作者 冯国强 张庆刚 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期169-172,共4页
We report the results of protein folding (219M, C34, N36, 2KES, 2KHK) by the method of accelerated molecular dynamics (aMD) at room temperature with the implicit solvent model. Starting from the linear structures,... We report the results of protein folding (219M, C34, N36, 2KES, 2KHK) by the method of accelerated molecular dynamics (aMD) at room temperature with the implicit solvent model. Starting from the linear structures, these proteins successfully fold to the native structure in a lO0-ns aMD simulation. In contrast, they are failed under the traditional MD simulation in the same simulation time. Then we find that the lowest root mean square deviations of helix structures from the native structures are 0.36 A, 0.63 A, 0.52 A, 1.1 A and 0.78 A. What is more, native contacts, cluster and free energy analyses show that the results of the aMD method are in accordance with the experiment very well. All analyses show that the aMD can accelerate the simulation process, thus we may apply it to the field of computer aided drug designs. 展开更多
关键词 KES MD KHK All-Atom direct Folding Simulation for Proteins Using the Accelerated Molecular dynamics in Implicit Solvent Model
原文传递
Reversible encapsulation tailored interfacial dynamics for boosting the water-gas shift performance 被引量:1
17
作者 Nanfang Tang Qinghao Shang +12 位作者 Shuai Chen Yuxia Ma Qingqing Gu Lu Lin Qike Jiang Guoliang Xu Chuntian Wu Bing Yang Zhijie Wu Hui Shi Jian Liu Wenhao Luo Yu Cong 《Chinese Journal of Catalysis》 2025年第1期394-403,共10页
Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare ... Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis. 展开更多
关键词 Interfacial dynamics HYDROXYLS Water-gas shiftreaction In-situspectroscopy
在线阅读 下载PDF
Directed Dominating Set Problem Studied by Cavity Method:Warning Propagation and Population Dynamics 被引量:1
18
作者 Yusupjan Habibulla 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第12期785-794,共10页
The minimal dominating set for a digraph(directed graph) is a prototypical hard combinatorial optimization problem. In a previous paper, we studied this problem using the cavity method. Although we found a solution fo... The minimal dominating set for a digraph(directed graph) is a prototypical hard combinatorial optimization problem. In a previous paper, we studied this problem using the cavity method. Although we found a solution for a given graph that gives very good estimate of the minimal dominating size, we further developed the one step replica symmetry breaking theory to determine the ground state energy of the undirected minimal dominating set problem. The solution space for the undirected minimal dominating set problem exhibits both condensation transition and cluster transition on regular random graphs. We also developed the zero temperature survey propagation algorithm on undirected Erds-Rnyi graphs to find the ground state energy. In this paper we continue to develope the one step replica symmetry breaking theory to find the ground state energy for the directed minimal dominating set problem. We find the following.(i) The warning propagation equation can not converge when the connectivity is greater than the core percolation threshold value of 3.704. Positive edges have two types warning, but the negative edges have one.(ii) We determine the ground state energy and the transition point of the Erd?os-R′enyi random graph.(iii) The survey propagation decimation algorithm has good results comparable with the belief propagation decimation algorithm. 展开更多
关键词 directed minimal dominating set replica symmetry breaking Erdos-Renyi graph warning propagation survey propagation decimation
原文传递
Single-cell transcriptomics reveals the cellular dynamics of hexafluoropropylene oxide dimer acid in exerting mouse male reproductive toxicity 被引量:1
19
作者 Xupeng Zang Yongzhong Wang +6 位作者 Lei Jiang Yuhao Qiu Yue Ding Shengchen Gu Gengyuan Cai Ting Gu Linjun Hong 《Journal of Animal Science and Biotechnology》 2025年第3期1073-1091,共19页
Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.Howeve... Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.However,a systematic characterization of its reproductive toxicity is still missing.This study aims to explore the male reproductive toxicity caused by GenX exposure and the potential cellular and molecular regulatory mechanisms behind it.Results Normally developing mice were exposed to GenX,and testicular tissue was subsequently analyzed and validated using single-cell RNA sequencing.Our results revealed that GenX induced severe testicular damage,disrupted the balance between undifferentiated and differentiated spermatogonial stem cells,and led to strong variation in the cellular dynamics of spermatogenesis.Furthermore,GenX exposure caused global upregulation of testicular somatic cellular inflammatory responses,increased abnormal macrophage differentiation,and attenuated fibroblast adhesion,disorganizing the somatic-germline interactions.Conclusions In conclusion,this study revealed complex cellular dynamics and transcriptome changes in mouse testis after GenX exposure,providing a valuable resource for understanding its reproductive toxicity. 展开更多
关键词 Cellular dynamics GenX Reproductive toxicity Single-cell RNA sequencing TESTIS
暂未订购
Experimental Study on the Coupling Dynamics of Metal Jet,Waves,and Bubble During Underwater Explosion of a Shaped Charge 被引量:1
20
作者 Yu Tian A-Man Zhang +1 位作者 Liu-Yi Xu Fu-Ren Ming 《Engineering》 2025年第7期168-187,共20页
Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show ... Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation. 展开更多
关键词 Shaped charge Underwater explosion Metal jet WAVES BUBBLE Coupling dynamics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部