Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently d...Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.展开更多
The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and ...The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.展开更多
The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant t...The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow(KTGF), kinetic-frictional constitutive correlation and turbulence model, a two-fluid model(TFM) was established to study the flow dynamics of the core shooting process. Two-fluid model(TFM) simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction(αs) and sand velocity(Vs).展开更多
Coherence is a key resource in quantum information science.Exactly understanding and controlling the variation of coherence are vital for implementation in realistic quantum systems.Using P-representation of density m...Coherence is a key resource in quantum information science.Exactly understanding and controlling the variation of coherence are vital for implementation in realistic quantum systems.Using P-representation of density matrix,we obtain the analytical solution of the master equation for the classical states in the non-Markovian process and investigate the coherent dynamics of Gaussian states.It is found that quantum coherence can be preserved in such a process if the coupling strength between system and environment exceeds a threshold value.We also discuss the characteristic function of the Gaussian states in the non-Markovian process,which provides an inevitable bridge for the control and operation of quantum coherence.展开更多
The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.B...The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.展开更多
In this article,we comment on the study by Yang et al,which demonstrated significant cross-sectional associations between heart rate variability(HRV)indices,depressive symptoms,and lung function in patients with chron...In this article,we comment on the study by Yang et al,which demonstrated significant cross-sectional associations between heart rate variability(HRV)indices,depressive symptoms,and lung function in patients with chronic obstructive pulmonary disease(COPD).Building on these findings,we further explore the underlying mechanisms,particularly inflammatory-autonomic-oxidative stress pathways,as key causal mediators.Moreover,analyzing genetic polymorphisms alongside environmental factors may uncover susceptibility pathways explaining interindividual differences in HRV and comorbidity risk.Additionally,longitudinal studies tracking HRV trajectories could identify thresholds predictive of accelerated lung function decline or cardiovascular events,informing personalized prevention strategies.Integrating longitudinal HRV data with multi-omics biomarkers and machine learning models could enable real-time prediction of depression relapses or COPD exacerbations,facilitating proactive interventions such as personalized biofeedback training or precision anti-inflammatory therapies.By synthesizing these perspectives,this integrative approach promises to advance precision medicine for COPD patients,particularly those with comorbid depression,by addressing both mechanistic insights and clinical translation.展开更多
In this editorial,we comment on the article by Qin et al.Although their article focused on the correlations of resilience with coping styles and quality of life(QoL)among patients with malignancies,we further discuss ...In this editorial,we comment on the article by Qin et al.Although their article focused on the correlations of resilience with coping styles and quality of life(QoL)among patients with malignancies,we further discuss the effect of resilience on QoL,the moderating role of the three dimensions of coping styles,and the longitudinal role of dynamic resilience throughout the cancer trajectory.展开更多
Traditionally,the construction of stable interphases relies on solvent structures dominated by aggregated anionic structures(AGG/AGG+).Nonetheless,we find that the construction of stable interphases in hightemperature...Traditionally,the construction of stable interphases relies on solvent structures dominated by aggregated anionic structures(AGG/AGG+).Nonetheless,we find that the construction of stable interphases in hightemperature environments is based on contact ion pairs(CIPs)dominated solvation structure here.In detail,in the long-chain phosphate ester-based electrolyte,the spatial site-blocking effect enables the strong solvation co-solvent ether(diethylene glycol dimethyl ether,G2)to exhibit strong ion-dipole interactions,further multicomponent competitive coordination maintaining the CIP,balancing electrode kinetics,and optimizing the high-temperature interphases.High-temperature in-situ Raman spectroscopy monitors the changes in the stable solvent structure during charge/discharge processes for the first time,and time of flight secondary ion mass spectrometry(TOF-SIMS)reveals the stable solid electrolyte interphase(SEI)with full-depth enrichment of the inorganic component.Benefiting from the high-temperature interfacial chemistry-dependent solvent structure,the advanced electrolyte enables stable cycling of 1.6 Ah 18650 batterie at 100-125℃and discharging with high current pulses(~1.83 A)at 150℃,which has rarely been reported so far.In addition,pin-pricking of 18650 batteries at100%state of charge(SoC)without fire or smoke and the moderate thermal runaway temperature(187℃)tested via the accelerating rate calorimetry(ARC)demonstrate the excellent safety of the optimized electrolyte.展开更多
Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applic...Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.展开更多
The gravitational wave background(GWB) produced by extreme-mass-ratio inspirals(EMRIs) serves as a powerful tool for probing the astrophysical and dynamical processes in galactic centers. EMRI systems are a primary ta...The gravitational wave background(GWB) produced by extreme-mass-ratio inspirals(EMRIs) serves as a powerful tool for probing the astrophysical and dynamical processes in galactic centers. EMRI systems are a primary target for the space-based detector laser interferometer space antenna due to their long-lived signals and high signal-to-noise ratios. This study explores the statistical properties of the GWB from EMRI, focusing on the calculation methods for the GWB, the astrophysical distribution of EMRI sources, and the influence of key parameters, including the spin of supermassive black holes(SMBHs) and the masses of compact objects(COs). By analyzing these factors, we determine the distribution range of the characteristic strain of the GWB from EMRIs. We find that the final eccentricity distributions appear to have negligible effect on the intensity of the GWB due to rapid circularization before they become detectable and the spin of the SMBH enhances the gravitational wave characteristic strain by approximately 1% compared to cases without spin effects. The masses of COs can also significantly affect the characteristic strain of the GWB from EMRIs, with black hole as CO producing a gravitational wave signal intensity that is approximately one order of magnitude higher compared to cases where neutron star or white dwarf are the COs.展开更多
On December 18,2023,a Mw6.1 earthquake struck Jishishan County,Gansu Province,China,marking the most significant earthquake in the northeastern edge of the Tibetan Plateau since 2000.Given its proximate to the Loess P...On December 18,2023,a Mw6.1 earthquake struck Jishishan County,Gansu Province,China,marking the most significant earthquake in the northeastern edge of the Tibetan Plateau since 2000.Given its proximate to the Loess Plateau,which is extremely susceptible to geohazards,this earthquake raises awareness about the seismic hazard of several mega-cities such as Xi'an in Northwest China.In this paper,we inferred that the rupture occurred on an east-dipping backthrust,resulting from the regional E-W contraction tectonic setting.Our dynamic model through teleseismic waves and static model through radar displacement measurements together reveal a unilateral,along-strike rupture,encountering a slip barrier at one side of the main slip patch causing a cluster of aftershocks.We also identified a high-dip structure,which is an early-stage backthrust fault whose dip becomes increasingly high due to regional compressional tectonism.Apart from the loaded fault segments,particularly on the fault linkage,which necessitate continuous examination,a detailed seismic hazard assessment of the west Qinling and Daotanghe-Linxia fault system identifies a seismic gap between Weiyuan and Dingxi with the potential for a Mw7.5 earthquake.Collectively,these findings provide valuable insights into the seismic behavior of the seismogenic fault as well as guidance on hazard mitigation in its surrounding fault systems.展开更多
The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our prev...The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.展开更多
The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely di...The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.展开更多
With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process...With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important.展开更多
Abstract The Nansha ultra-crust layer-block is confined by ultra-crustal boundary faults of distinctive features, bordering the Kangtai-Shuangzi-Xiongnan extensional faulted zone on the north, the Baxian-Baram-Yoca-Cu...Abstract The Nansha ultra-crust layer-block is confined by ultra-crustal boundary faults of distinctive features, bordering the Kangtai-Shuangzi-Xiongnan extensional faulted zone on the north, the Baxian-Baram-Yoca-Cuyo nappe faulted zone on the south, the Wan'an-Natuna strike-slip tensional faulted zone on the west and the Mondoro-Panay strike-slip compressive faulted zone on the east. These faults take the top of the Nansha asthenosphere as their common detachmental surface. The Cenozoic dynamic process of the ultra-crust layer-block can be divided into four stages: K2-E21, during which the northern boundary faults extended, this ultra-crust layer-block was separated from the South China-Indosinian continental margin, the Palaeo-South China Sea subducted southwards and the Sibu accretion wedge was formed; E22-E31, during which the Southwest sub-sea basin extended and orogeny was active due to the collision of the Sibu accretion wedge; E32-N11, during which the central sub-sea basin extended, the Miri accretion wedge was formed and “A-type” subduction of the southern margin of the north Balawan occurred; N12-the present, during which large-scale thrusting and napping of the boundary faults in the south and mountain-building have taken place and the South China Sea stopped its extension.展开更多
Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts...Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.展开更多
The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on s...Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.展开更多
The kinematics and dynamics of plate tectonics are frontal subjects in geosciences and the strong earthquake occurred along the plate boundary result directly from plate movement. By analyzing Ibaraki earthquake seque...The kinematics and dynamics of plate tectonics are frontal subjects in geosciences and the strong earthquake occurred along the plate boundary result directly from plate movement. By analyzing Ibaraki earthquake sequence, it has been found that the focal fault plane shows a special image of grading expansion along the direction of strike and adjustment along the dip direction respectively. With the consideration of strike, dip and slip directions of focal mechanism, we have confirmed that Ibaraki earthquake belongs to a thrust fault earthquake occurred under the Japan Trench. The cause of the earthquake sequence is discussed in the paper. The study on the temporal-spatial distribution of the earthquake sequence with a time-scale between the year-scale spatial geodetic data and the second-scale moment tensor of the strong earthquake has indicated the dynamic process of Pacific Plate subduction under the Eurasia Plate. According to the average slip distance of earthquake and the velocity of plate movement, it is predicted that a strong earthquake might occur in recent years.展开更多
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earli...In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.展开更多
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(62225303)the National Natural Science Fundation of China(62303039,62433004)+2 种基金the China Postdoctoral Science Foundation(BX20230034,2023M730190)the Fundamental Research Funds for the Central Universities(buctrc202201,QNTD2023-01)the High Performance Computing Platform,College of Information Science and Technology,Beijing University of Chemical Technology
文摘Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.
基金MGMR Eighth Five- Year Plan Basic Geology Research Foundation Grant 8502216China National Natural Science Foundation Grant 49173169
文摘The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.
基金supported by the National Science Foundation of China(Grant Number 51575304)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant Number 2012ZX04012011)
文摘The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow(KTGF), kinetic-frictional constitutive correlation and turbulence model, a two-fluid model(TFM) was established to study the flow dynamics of the core shooting process. Two-fluid model(TFM) simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction(αs) and sand velocity(Vs).
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405100,11404377 and 11674360the Natural Science Basic Research Plan of Shaanxi Province of China under Grant No 2015JM1032the Doctoral Research Fund of Shaanxi University of Science and Technology of China under Grant No 2018BJ-02
文摘Coherence is a key resource in quantum information science.Exactly understanding and controlling the variation of coherence are vital for implementation in realistic quantum systems.Using P-representation of density matrix,we obtain the analytical solution of the master equation for the classical states in the non-Markovian process and investigate the coherent dynamics of Gaussian states.It is found that quantum coherence can be preserved in such a process if the coupling strength between system and environment exceeds a threshold value.We also discuss the characteristic function of the Gaussian states in the non-Markovian process,which provides an inevitable bridge for the control and operation of quantum coherence.
基金Support by the National Natural Science Foundation of China(No.92258303)the Project of Donghai Laboratory(No.DH-2022ZY0005)。
文摘The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.
文摘In this article,we comment on the study by Yang et al,which demonstrated significant cross-sectional associations between heart rate variability(HRV)indices,depressive symptoms,and lung function in patients with chronic obstructive pulmonary disease(COPD).Building on these findings,we further explore the underlying mechanisms,particularly inflammatory-autonomic-oxidative stress pathways,as key causal mediators.Moreover,analyzing genetic polymorphisms alongside environmental factors may uncover susceptibility pathways explaining interindividual differences in HRV and comorbidity risk.Additionally,longitudinal studies tracking HRV trajectories could identify thresholds predictive of accelerated lung function decline or cardiovascular events,informing personalized prevention strategies.Integrating longitudinal HRV data with multi-omics biomarkers and machine learning models could enable real-time prediction of depression relapses or COPD exacerbations,facilitating proactive interventions such as personalized biofeedback training or precision anti-inflammatory therapies.By synthesizing these perspectives,this integrative approach promises to advance precision medicine for COPD patients,particularly those with comorbid depression,by addressing both mechanistic insights and clinical translation.
文摘In this editorial,we comment on the article by Qin et al.Although their article focused on the correlations of resilience with coping styles and quality of life(QoL)among patients with malignancies,we further discuss the effect of resilience on QoL,the moderating role of the three dimensions of coping styles,and the longitudinal role of dynamic resilience throughout the cancer trajectory.
基金supported by the National Natural Science Foundation of China(grant no.52072322,52202235)the Department of Science and Technology of Sichuan Province(CN)(grant no.23GJHZ0147)the Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.:2022KYCX111)。
文摘Traditionally,the construction of stable interphases relies on solvent structures dominated by aggregated anionic structures(AGG/AGG+).Nonetheless,we find that the construction of stable interphases in hightemperature environments is based on contact ion pairs(CIPs)dominated solvation structure here.In detail,in the long-chain phosphate ester-based electrolyte,the spatial site-blocking effect enables the strong solvation co-solvent ether(diethylene glycol dimethyl ether,G2)to exhibit strong ion-dipole interactions,further multicomponent competitive coordination maintaining the CIP,balancing electrode kinetics,and optimizing the high-temperature interphases.High-temperature in-situ Raman spectroscopy monitors the changes in the stable solvent structure during charge/discharge processes for the first time,and time of flight secondary ion mass spectrometry(TOF-SIMS)reveals the stable solid electrolyte interphase(SEI)with full-depth enrichment of the inorganic component.Benefiting from the high-temperature interfacial chemistry-dependent solvent structure,the advanced electrolyte enables stable cycling of 1.6 Ah 18650 batterie at 100-125℃and discharging with high current pulses(~1.83 A)at 150℃,which has rarely been reported so far.In addition,pin-pricking of 18650 batteries at100%state of charge(SoC)without fire or smoke and the moderate thermal runaway temperature(187℃)tested via the accelerating rate calorimetry(ARC)demonstrate the excellent safety of the optimized electrolyte.
基金supported by the National Key Research and Development Program of China(No.2023YFF0715103)-financial supportNational Natural Science Foundation of China(Grant Nos.62306237 and 62006191)-financial support+1 种基金Key Research and Development Program of Shaanxi(Nos.2024GX-YBXM-149 and 2021ZDLGY15-04)-financial support,NorthwestUniversity Graduate Innovation Project(No.CX2023194)-financial supportNatural Science Foundation of Shaanxi(No.2023-JC-QN-0750)-financial support.
文摘Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.
基金supported by the National Key R&D Program of China (Grant No. 2020YFC2201400)。
文摘The gravitational wave background(GWB) produced by extreme-mass-ratio inspirals(EMRIs) serves as a powerful tool for probing the astrophysical and dynamical processes in galactic centers. EMRI systems are a primary target for the space-based detector laser interferometer space antenna due to their long-lived signals and high signal-to-noise ratios. This study explores the statistical properties of the GWB from EMRI, focusing on the calculation methods for the GWB, the astrophysical distribution of EMRI sources, and the influence of key parameters, including the spin of supermassive black holes(SMBHs) and the masses of compact objects(COs). By analyzing these factors, we determine the distribution range of the characteristic strain of the GWB from EMRIs. We find that the final eccentricity distributions appear to have negligible effect on the intensity of the GWB due to rapid circularization before they become detectable and the spin of the SMBH enhances the gravitational wave characteristic strain by approximately 1% compared to cases without spin effects. The masses of COs can also significantly affect the characteristic strain of the GWB from EMRIs, with black hole as CO producing a gravitational wave signal intensity that is approximately one order of magnitude higher compared to cases where neutron star or white dwarf are the COs.
基金funded by the National Natural Science Foundation of China(No.42377159)the Shaanxi Province Science and Technology Innovation Team(No.2021TD-51)+1 种基金the Shaanxi Province Geoscience Big Data and Geohazard Prevention Innovation Team(2022)the Fundamental Research Funds for the Central Universities,CHD(No.300102263401)。
文摘On December 18,2023,a Mw6.1 earthquake struck Jishishan County,Gansu Province,China,marking the most significant earthquake in the northeastern edge of the Tibetan Plateau since 2000.Given its proximate to the Loess Plateau,which is extremely susceptible to geohazards,this earthquake raises awareness about the seismic hazard of several mega-cities such as Xi'an in Northwest China.In this paper,we inferred that the rupture occurred on an east-dipping backthrust,resulting from the regional E-W contraction tectonic setting.Our dynamic model through teleseismic waves and static model through radar displacement measurements together reveal a unilateral,along-strike rupture,encountering a slip barrier at one side of the main slip patch causing a cluster of aftershocks.We also identified a high-dip structure,which is an early-stage backthrust fault whose dip becomes increasingly high due to regional compressional tectonism.Apart from the loaded fault segments,particularly on the fault linkage,which necessitate continuous examination,a detailed seismic hazard assessment of the west Qinling and Daotanghe-Linxia fault system identifies a seismic gap between Weiyuan and Dingxi with the potential for a Mw7.5 earthquake.Collectively,these findings provide valuable insights into the seismic behavior of the seismogenic fault as well as guidance on hazard mitigation in its surrounding fault systems.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202)+2 种基金the Shanghai Second Polytechnic University Key Discipline Construction(4th term)-Control Theory&Control Engineering(XXKPY1308)the Cultivation Program of Young Teachers in Colleges and Universities of Shanghai(ZZegdl4013)the School Foundation of Shanghai Second Polytechnic University(EGD14XQD02)
文摘The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.
基金National Natural Science Foundation of China, No.40671186 No.40271012
文摘The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.
文摘With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important.
文摘Abstract The Nansha ultra-crust layer-block is confined by ultra-crustal boundary faults of distinctive features, bordering the Kangtai-Shuangzi-Xiongnan extensional faulted zone on the north, the Baxian-Baram-Yoca-Cuyo nappe faulted zone on the south, the Wan'an-Natuna strike-slip tensional faulted zone on the west and the Mondoro-Panay strike-slip compressive faulted zone on the east. These faults take the top of the Nansha asthenosphere as their common detachmental surface. The Cenozoic dynamic process of the ultra-crust layer-block can be divided into four stages: K2-E21, during which the northern boundary faults extended, this ultra-crust layer-block was separated from the South China-Indosinian continental margin, the Palaeo-South China Sea subducted southwards and the Sibu accretion wedge was formed; E22-E31, during which the Southwest sub-sea basin extended and orogeny was active due to the collision of the Sibu accretion wedge; E32-N11, during which the central sub-sea basin extended, the Miri accretion wedge was formed and “A-type” subduction of the southern margin of the north Balawan occurred; N12-the present, during which large-scale thrusting and napping of the boundary faults in the south and mountain-building have taken place and the South China Sea stopped its extension.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 40802067)the National Basic Research Program of China (973 program, Grant No.2008CB425803)+1 种基金the Basic Scientific Research Operating Expenses of Institute of Geomechanics, CAGS (Grant No. DZLXJK200805)the Land and Natural Resources of China (Grant No. 1212010914025)
文摘Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
基金National Natural Foundation of China (No.60421002, No.70471052)
文摘Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.
文摘The kinematics and dynamics of plate tectonics are frontal subjects in geosciences and the strong earthquake occurred along the plate boundary result directly from plate movement. By analyzing Ibaraki earthquake sequence, it has been found that the focal fault plane shows a special image of grading expansion along the direction of strike and adjustment along the dip direction respectively. With the consideration of strike, dip and slip directions of focal mechanism, we have confirmed that Ibaraki earthquake belongs to a thrust fault earthquake occurred under the Japan Trench. The cause of the earthquake sequence is discussed in the paper. The study on the temporal-spatial distribution of the earthquake sequence with a time-scale between the year-scale spatial geodetic data and the second-scale moment tensor of the strong earthquake has indicated the dynamic process of Pacific Plate subduction under the Eurasia Plate. According to the average slip distance of earthquake and the velocity of plate movement, it is predicted that a strong earthquake might occur in recent years.
文摘In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.