期刊文献+
共找到867篇文章
< 1 2 44 >
每页显示 20 50 100
Dynamics models of soil organic carbon 被引量:8
1
作者 杨丽霞 潘剑君 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第4期323-330,共8页
As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and... As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China. 展开更多
关键词 Soil carbon Soil organic carbon Dynamic model
在线阅读 下载PDF
Fractional Birkhoffian Dynamics Based on Quasi-fractional Dynamics Models and Its Lie Symmetry 被引量:3
2
作者 JIA Yundie ZHANG Yi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期84-95,共12页
In order to investigate the dynamic behavior of non-conservative systems,the Lie symmetries and conserved quantities of fractional Birkhoffian dynamics based on quasi-fractional dynamics model are proposed and studied... In order to investigate the dynamic behavior of non-conservative systems,the Lie symmetries and conserved quantities of fractional Birkhoffian dynamics based on quasi-fractional dynamics model are proposed and studied.The quasi-fractional dynamics model here refers to the variational problem based on the definition of RiemannLiouville fractional integral(RLFI),the variational problem based on the definition of extended exponentially fractional integral(EEFI),and the variational problem based on the definition of fractional integral extended by periodic laws(FIEPL).First,the fractional Pfaff-Birkhoff principles based on quasi-fractional dynamics models are established,and the corresponding Birkhoff’s equations and the determining equations of Lie symmetry are obtained.Second,for fractional Birkhoffian systems based on quasi-fractional models,the conditions and forms of conserved quantities are given,and Lie symmetry theorems are proved.The Pfaff-Birkhoff principles,Birkhoff’s equations and Lie symmetry theorems of quasi-fractional Birkhoffian systems and classical Birkhoffian systems are special cases of this article.Finally,some examples are given. 展开更多
关键词 quasi-fractional dynamics model Lie symmetry conserved quantity fractional Birkhoffian system Riemann-Liouville derivative
在线阅读 下载PDF
Smart cities,smart systems:A comprehensive review of system dynamics model applications in urban studies in the big data era 被引量:2
3
作者 Gift Fabolude Charles Knoble +1 位作者 Anvy Vu Danlin Yu 《Geography and Sustainability》 2025年第1期25-36,共12页
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ... This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models. 展开更多
关键词 Urban sustainability Smart cities System dynamics models Big data analytics Urban system complexity Data-driven urbanism
在线阅读 下载PDF
A comprehensive comparative investigation of frictional force models for dynamics of rotor−bearing systems 被引量:6
4
作者 LIU Jing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1770-1779,共10页
Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the beari... Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the bearings on the vibrations of the RBS can be helpful for understanding the vibration mechanisms in the rotating machinery.In this study,an improved dynamic model of a RBS considering different frictional force models is presented.A comparative investigation on the influences of the empirical and analytical frictional force models on the vibration characteristics of the RBS is proposed.The empirical frictional force models include Palmgren’s and SKF’s models.The analytical frictional force model considers the rolling friction caused by the radial elastic material hysteresis,slipping friction between the ball and races,viscosity friction caused by the lubricating oil,and contact friction between the ball and cage.The influences of the external load and rotational speed on the vibrations of the RBS are analyzed.The comparative results show that the analytical frictional force model can give a more reasonable method for formulating the effects of the friction forces in the bearings on the vibrations of the RBS.The results also demonstrate that the friction forces in the bearings can significantly affect the vibrations of the RBSs. 展开更多
关键词 friction force vibrations rotor-bearing system dynamic model
在线阅读 下载PDF
New Developments on Existence and Uniqueness of Solutions to Some Models in Atmospheric Dynamics 被引量:4
5
作者 穆穆 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1991年第4期383-398,共16页
This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensiona... This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensional balanced model. The main aim of this paper is to introduce some results about the global and local (with respect to time) existence of solutions given by the authors in recent years, but others' important contributions and the literature on this subject are also quoted. We discuss briefly the relationships among the existence and uniqueness, physical instability and computational instability. In the appendixes, some key mathematical techniques in obtaining our results are presented, which are of vital importance to other problems in geophysical fluid dynamics as well. 展开更多
关键词 New Developments on Existence and Uniqueness of Solutions to Some models in Atmospheric dynamics
在线阅读 下载PDF
New approach to assess sperm DNA fragmentation dynamics: Fine-tuning mathematical models
6
作者 Isabel Ortiz Jesus Dorado +4 位作者 Jane Morrell Jaime Gosalvez Francisco Crespo Juan M.Jimenez Manuel Hidalgo 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第3期592-600,共9页
Background: Sperm DNA fragmentation(sDF) has been proved to be an important parameter in order to predict in vitro the potential fertility of a semen sample. Colloid centrifugation could be a suitable technique to ... Background: Sperm DNA fragmentation(sDF) has been proved to be an important parameter in order to predict in vitro the potential fertility of a semen sample. Colloid centrifugation could be a suitable technique to select those donkey sperm more resistant to DNA fragmentation after thawing. Previous studies have shown that to elucidate the latent damage of the DNA molecule, sDF should be assessed dynamically, where the rate of fragmentation between treatments indicates how resistant the DNA is to iatrogenic damage. The rate of fragmentation is calculated using the slope of a linear regression equation. However, it has not been studied if s DF dynamics fit this model. The objectives of this study were to evaluate the effect of different after-thawing centrifugation protocols on sperm DNA fragmentation and elucidate the most accurate mathematical model(linear regression, exponential or polynomial) for DNA fragmentation over time in frozen-thawed donkey semen.Results: After submitting post-thaw semen samples to no centrifugation(UDC), sperm washing(SW) or single layer centrifugation(SLC) protocols, sD F values after 6 h of incubation were significantly lower in SLC samples than in SW or UDC.Coefficient of determination(R-2) values were significantly higher for a second order polynomial model than for linear or exponential. The highest values for acceleration of fragmentation(aSDF) were obtained for SW, fol owed by SLC and UDC.Conclusion: SLC after thawing seems to preserve longer DNA longevity in comparison to UDC and SW. Moreover,the fine-tuning of models has shown that sDF dynamics in frozen-thawed donkey semen fit a second order polynomial model, which implies that fragmentation rate is not constant and fragmentation acceleration must be taken into account to elucidate hidden damage in the DNA molecule. 展开更多
关键词 Colloid centrifugation dynamics Fine-tuning Mathematical models Sperm DNA fragmentation
在线阅读 下载PDF
Phenomenological Models of the Global Demographic Dynamics and Their Usage for Forecasting in 21st Century
7
作者 Askar Akaev 《Applied Mathematics》 2022年第7期612-649,共38页
A great discovery made by H. von Foerster, P. M. Mora and L. W. Amiot was published in a 1960 issue of “Science”. The authors showed that existing data for calculating the Earth’s population in the new era (from 1 ... A great discovery made by H. von Foerster, P. M. Mora and L. W. Amiot was published in a 1960 issue of “Science”. The authors showed that existing data for calculating the Earth’s population in the new era (from 1 to 1958) could be described with incredibly high proximity by a hyperbolic function with the point of singularity on 13 November 2026. Thus, empirical regularity of the rise of the human population was established, which was marked by explosive demographic growth in the 20<sup>th</sup> century when during only one century it almost quadrupled: from 1.656 billion in 1900 to 6.144 billion in 2000. Nowadays, the world population has already overcome 7.8 billion people. Immediately after 1960, an active search for phenomenological models began to explain the mechanism of the hyperbolic population growth and the following demographic transition designed to stabilize its population. A significant role in explaining the mechanism of the hyperbolic growth of the world population was played by S. Kuznets (1960) and E. Boserup (1965), who found out that the rates of technological progress historically increased in proportion to the Earth’s population. It meant that the growth of the population led to raising the level of life-supporting technologies, and the latter in its turn enlarged the carrying capacity of the Earth, making it possible for the world population to expand. Proceeding from the information imperative, we have developed the model of the demographic dynamics for the 21<sup>st</sup> century for the first time. The model shows that with the development and spread of Intelligent Machines (IM), the number of the world population reaching a certain maximum will then irreversibly decline. Human depopulation will largely touch upon the most developed countries, where IM is used intensively nowadays. Until a certain moment in time, this depopulation in developed countries will be compensated by the explosive growth of the population in African countries located south of the Sahara. Calculations in our model reveal that the peak of the human population of 8.52 billion people will be reached in 2050, then it will irreversibly go down to 7.9 billion people by 2100, if developed countries do not take timely effective measures to overcome the process of information depopulation. 展开更多
关键词 Explosive Population Growth Demographic Transition DEMOGRAPHIC Technological and Information Imperatives Phenomenological models of The Demographic dynamics Demographic Forecast in the Age of Intelligent Machines
在线阅读 下载PDF
Dynamics Simulation and Optimization of Hydraulic Excavator Working Device
8
作者 Dongjun He 《机械工程与设计(中英文版)》 2025年第2期1-6,共6页
The performance and efficiency of hydraulic excavators heavily depend on the design and optimization of their working devices.The working device,which consists of the boom,arm,and bucket,plays a crucial role in determ... The performance and efficiency of hydraulic excavators heavily depend on the design and optimization of their working devices.The working device,which consists of the boom,arm,and bucket,plays a crucial role in determining the machine's digging capacity,stability,and overall operational efficiency.This paper presents a comprehensive study on the dynamics simulation and optimization of hydraulic excavator working devices.The paper outlines the fundamental principles of dynamic modeling,incorporating multi-body dynamics and hydraulic system analysis.It further explores various simulation techniques to evaluate the performance of the working device under varying operational conditions,including load and hydraulic system effects.The study also addresses performance optimization,focusing on multi-objective optimization methods that balance multiple factors such as energy efficiency,speed,and load capacity.Additionally,the paper discusses key factors influencing performance,such as mechanical design,material properties,and operational conditions.The results of the dynamic simulations and optimization analyses demonstrate potential improvements in operational efficiency and system stability,providing a valuable framework for the design and enhancement of hydraulic excavator working devices. 展开更多
关键词 Hydraulic Excavator Working Device Dynamic Modeling Performance Optimization Multi-body dynamics Hydraulic System SIMULATION Design Optimization Multi-objective Optimization Excavator Performance
在线阅读 下载PDF
Deployment dynamics and experiments of a tendon-actuated flexible manipulator
9
作者 Benteng ZHANG Jialiang SUN Haiyan HU 《Chinese Journal of Aeronautics》 2025年第2期459-477,共19页
The quantity of space debris on Earth orbit has escalated tremendously in recent years, presenting a significant hazard to human space operations. It is urgent to develop effective measures to capture and remove vario... The quantity of space debris on Earth orbit has escalated tremendously in recent years, presenting a significant hazard to human space operations. It is urgent to develop effective measures to capture and remove various space debris. For this purpose, this paper presents a tendon-actuated flexible deployable manipulator. The flexible manipulator consists of several deployable units connected by Cardan joints and actuated by tendons. Compared with the present technologies for capturing space debris such as rigid robotic arm or flying net, this flexible manipulator is deployable, reusable, lightweight and applicable to the capture of large space debris. In order to investigate its deployment dynamics, an accurate dynamic model of the flexible manipulator is established based on the natural coordinate formulation (NCF) and the absolute nodal coordinate formulation (ANCF). Subsequently, numerical simulations are carried out to study the effects of system parameters and the base satellite on its deployment dynamics. Finally, ground experiments for both deployment and bending of the flexible manipulator are conducted to verify its effectiveness and feasibility. 展开更多
关键词 Flexible manipulator Tendon-actuated Dynamic modeling Deployment dynamics Ground experiments
原文传递
An Iterative Tuning Method for Feedforward Control of Parallel Manipulators Considering Nonlinear Dynamics
10
作者 Xiaojian Wang Jun Wu 《Chinese Journal of Mechanical Engineering》 2025年第1期295-305,共11页
Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that t... Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators. 展开更多
关键词 Parallel manipulator Dynamic model Feedforward control Iterative learning control Parameter design
在线阅读 下载PDF
Contact Dynamics Modeling and Control During the Combination Process of Air-Ground Robots
11
作者 Xueying Jin Haoyuan Liu +2 位作者 Guiyu Dong Kun Xu Xilun Ding 《Chinese Journal of Mechanical Engineering》 2025年第1期306-322,共17页
In recent years,there has been a surge of interest in air-ground collaborative robotics technologies.Our research group designs a novel combination-separation air-ground robot(CSAGR),which exhibits rapid automatic com... In recent years,there has been a surge of interest in air-ground collaborative robotics technologies.Our research group designs a novel combination-separation air-ground robot(CSAGR),which exhibits rapid automatic combination and separation capabilities.During the combination process,contact effects between robots,as well as between robots and the environment,are unavoidable.Therefore,it is essential to conduct detailed and accurate modeling and analysis of the collision impact intensity and transmission pathways within the robotic system to ensure the successful execution of the combination procedure.This paper addresses the intricate surface geometries and multi-point contact challenges present in the contact regions of dual robots by making appropriate modifications to the traditional continuous contact force model and applying equivalent processing techniques.The validity of the developed model is confirmed through comparisons with results obtained from finite element analysis(FEA),which demonstrates its high fidelity.Additionally,the impact of this model on control performance is analyzed within the flight control system,thereby further ensuring the successful completion of the combination process.This research represents a pioneering application and validation of continuous contact theory in the dynamics of collisions within dual robot systems. 展开更多
关键词 Air-ground robot Combination-separation function Contact force Dynamic modeling Finite element analysis
在线阅读 下载PDF
Dynamics and experiments of a tendon-actuated flexible robotic arm for capturing a floating target
12
作者 Xin Xia Yunpeng Sun Jialiang Sun 《Defence Technology(防务技术)》 2025年第5期216-241,共26页
Reusable and flexible capturing of space debris is highly required in future aerospace technologies.A tendon-actuated flexible robotic arm is therefore proposed for capturing floating targets in this paper.Firstly,an ... Reusable and flexible capturing of space debris is highly required in future aerospace technologies.A tendon-actuated flexible robotic arm is therefore proposed for capturing floating targets in this paper.Firstly,an accurate dynamic model of the flexible robotic arm is established by using the absolute nodal coordinate formulation(ANCF)in the framework of the arbitrary Lagrangian-Eulerian(ALE)description and the natural coordinate formulation(NCF).The contact and self-contact dynamics of the flexible robotic arm when bending and grasping an object are considered via a fast contact detection approach.Then,the dynamic simulations of the flexible robotic arm for capturing floating targets are carried out to study the influence of the position,size,and mass of the target object on the grasping performance.Finally,a principle prototype of the tendon-actuated flexible robotic arm is manufactured to validate the dynamic model.The corresponding grasping experiments for objects of various shapes are also conducted to illustrate the excellent performance of the flexible robotic arm. 展开更多
关键词 Tendon-actuated flexible robotic arm Dynamic modeling Contact dynamics ALE-ANCF variable-length cable element Capturing experiments
在线阅读 下载PDF
Adaptive backward stepwise selection of fast sparse identification of nonlinear dynamics
13
作者 Feng JIANG Lin DU +2 位作者 Qing XUE Zichen DENG C.GREBOGI 《Applied Mathematics and Mechanics(English Edition)》 2025年第12期2361-2384,共24页
Sparse identification of nonlinear dynamics(SINDy)has made significant progress in data-driven dynamics modeling.However,determining appropriate hyperparameters and addressing the time-consuming symbolic regression pr... Sparse identification of nonlinear dynamics(SINDy)has made significant progress in data-driven dynamics modeling.However,determining appropriate hyperparameters and addressing the time-consuming symbolic regression process remain substantial challenges.This study proposes the adaptive backward stepwise selection of fast SINDy(ABSS-FSINDy),which integrates statistical learning-based estimation and technical advancements to significantly reduce simulation time.This approach not only provides insights into the conditions under which SINDy performs optimally but also highlights potential failure points,particularly in the context of backward stepwise selection(BSS).By decoding predefined features into textual expressions,ABSS-FSINDy significantly reduces the simulation time compared with conventional symbolic regression methods.We validate the proposed method through a series of numerical experiments involving both planar/spatial dynamics and high-dimensional chaotic systems,including Lotka-Volterra,hyperchaotic Rossler,coupled Lorenz,and Lorenz 96 benchmark systems.The experimental results demonstrate that ABSS-FSINDy autonomously determines optimal hyperparameters within the SINDy framework,overcoming the curse of dimensionality in high-dimensional simulations.This improvement is substantial across both lowand high-dimensional systems,yielding efficiency gains of one to three orders of magnitude.For instance,in a 20D dynamical system,the simulation time is reduced from 107.63 s to just 0.093 s,resulting in a 3-order-of-magnitude improvement in simulation efficiency.This advancement broadens the applicability of SINDy for the identification and reconstruction of high-dimensional dynamical systems. 展开更多
关键词 data-driven dynamics modeling backward stepwise selection(BSS) sparse identification of nonlinear dynamics(SINDy) sparse regression hyperparameter determination curse of dimensionality
在线阅读 下载PDF
Data-Driven Iterative Learning Consensus Tracking Based on Robust Neural Models for Unknown Heterogeneous Nonlinear Multiagent Systems With Input Constraints
14
作者 Chong Zhang Yunfeng Hu +2 位作者 TingTing Wang Xun Gong Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 2025年第10期2153-2155,共3页
Dear Editor,Aiming at the consensus tracking problem of a class of unknown heterogeneous nonlinear multiagent systems(MASs)with input constraints,a novel data-driven iterative learning consensus control(ILCC)protocol ... Dear Editor,Aiming at the consensus tracking problem of a class of unknown heterogeneous nonlinear multiagent systems(MASs)with input constraints,a novel data-driven iterative learning consensus control(ILCC)protocol based on zeroing neural networks(ZNNs)is proposed.First,a dynamic linearization data model(DLDM)is acquired via dynamic linearization technology(DLT). 展开更多
关键词 dynamic linearization data model dldm consensus tracking problem input constraints consensus tracking unknown heterogeneous nonlinear multiagent systems robust neural models data driven iterative learning zeroing neural networks znns
在线阅读 下载PDF
Dynamics modeling and control of a transport aircraft for ultra-low altitude airdrop 被引量:25
15
作者 Liu Ri Sun Xiuxia Dong Wenhan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第2期478-487,共10页
The nonlinear aircraft model with heavy cargo moving inside is derived by using the sep- aration body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furt... The nonlinear aircraft model with heavy cargo moving inside is derived by using the sep- aration body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input^utput feedback linearization method. On this basis, an iterative quasi-sliding mode (SM) flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of "smaUer errors correspond to bigger gains and bigger errors correspond to saturated gains" is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunov- based analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission. 展开更多
关键词 dynamics modeling Feedback liaearization Flight control Nonlinear system Sliding mode control UNCERTAINTY
原文传递
Kinematics and Dynamics Model of GH4169 Alloy for Thermal Deformation 被引量:15
16
作者 WANG Zhong-tang ZHANG Shi-hong +2 位作者 CHENG Ming LI De-fu YANG Xiao-hong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第7期75-78,共4页
The stress-strain curves and microstructure properties of superalloy GH4169 was tested by thermal simulation experiment with different parameters,which were deformation temperature and strain rate and strain and origi... The stress-strain curves and microstructure properties of superalloy GH4169 was tested by thermal simulation experiment with different parameters,which were deformation temperature and strain rate and strain and original grain size.The influence of technology parameters on crystal grain size of dynamic recrystallization(DRC)was analyzed.The kinematics model of superalloy GH4169 was established,in which the relation between grain size of dynamic recrystallization and function Z(Zener-Hollomon)and parameters was described.The dynamics model of superalloy GH4169 was put forward,which described the relation between the quantity of dynamic recrystallization and function Z and parameters.The research results showed that the grain size of dynamic recrystallization increased with increasing the temperature and decreasing the strain rate.And the grain size of DRC bore no relationship to original grain size.And the quantity of dynamic recrystallization decreased with increasing the original grain size. 展开更多
关键词 GH4169 superalloy kinematics model dynamics model thermal deformation
原文传递
A system dynamics approach for water resources policy analysis in arid land:a model for Manas River Basin 被引量:14
17
作者 ShanShan DAI LanHai LI +2 位作者 HongGang XU XiangLiang PAN XueMei LI 《Journal of Arid Land》 SCIE CSCD 2013年第1期118-131,共14页
The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to m... The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin. 展开更多
关键词 water resources management sustainable development system dynamics modeling water stress arid river basin
在线阅读 下载PDF
Evaluation of Subgrid-scale Models in Large-eddy Simulations of Turbulent Flow in a Centrifugal Pump Impeller 被引量:16
18
作者 YANG Zhengjun WANG Fujun ZHOU Peijian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期911-918,共8页
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow fi... The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries. 展开更多
关键词 large-eddy simulation subgrid-scale model dynamic mixed model centrifugal pump
在线阅读 下载PDF
Population parameters and dynamic pool models of commercial fishes in the Beibu Gulf, northern South China Sea 被引量:15
19
作者 WANG Xuehui QIU Yongsong +3 位作者 DU Feiyan LIN Zhaojin SUN Dianrong HUANG Shuolin 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第1期105-117,共13页
Length-frequency data of eight commercial fish species in the Beibu Gulf (Golf of Tonkin), northern South China Sea, were collected during 2006-2007. Length-weight relationships and growth and mortality parameters w... Length-frequency data of eight commercial fish species in the Beibu Gulf (Golf of Tonkin), northern South China Sea, were collected during 2006-2007. Length-weight relationships and growth and mortality parameters were analyzed using FiSAT II software. Five species had isometric growth, two species had negative allometric growth, and one species had positive allometric growth. Overall, the exploitation rates of the eight species were lower in 2006 2007 than in 1997-1999: for four species (Saurida tumbil, Saurida undosquamis, Argyrosomus macrocephalus, and Nemipterus virgatus) it was lower in 2006-2007 than in 1997 1999, for two species (Parargyrops edita and Trichiurus haumela) it remained the same, and for the other two species (Trachurus japonicus and Decapterus maruadsi) it was higher in 2006~007 than in 1997-1999. The exploitation rates might have declined because of the decline in fishing intensity caused by high crude oil prices. The optimum exploitation rate, estimated using Beverton-Holt dynamic pool models, indicated that although fishes in the Beibu Gulf could sustain high exploitation rates, the under-size fishes at first capture resulted in low yields. To increase the yield per recruitment, it is more effective to increase the size at first capture than to control fishing effort. 展开更多
关键词 commercial fish population parameters dynamic pool model stock status Beibu Gulf northern South China Sea
原文传递
Nonlinear dynamics of a flapping rotary wing:Modeling and optimal wing kinematic analysis 被引量:9
20
作者 Qiuqiu WEN Shijun GUO +1 位作者 Hao LI Wei DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期1041-1052,共12页
The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic p... The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement. 展开更多
关键词 Dynamic model Dynamic time-lag Flapping rotary wing Kinematics of wings Passive rotation Strike angle
原文传递
上一页 1 2 44 下一页 到第
使用帮助 返回顶部