The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar ener...The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.展开更多
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ...Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).展开更多
To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system base...To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system based on slicing reverse method was proposed.The flow characteristics were found out through CFD,and the velocity vector field,pressure field and turbulent kinetic energy field for different valve lifts were discussed,which were in good agreement with experimental data,and the quality of reconstruction was evaluated.In order to improve its flow characteristic,an optimization plan was proposed.The results show that the flow characteristics after optimization are obviously improved.The results can provide a reference for the design and optimization of the intake system of cylinder head.展开更多
Chassis-by-wire technology has gained significant attention,with the scope of chassis domain control expanding from traditional two-dimensional plane motion control to encompass three-dimensional space motion control....Chassis-by-wire technology has gained significant attention,with the scope of chassis domain control expanding from traditional two-dimensional plane motion control to encompass three-dimensional space motion control.Modern chassis-by-wire systems manage an increasing number of heterogeneous chassis execution systems,including distributed drive,all-wheel drive(AWD),brake-by-wire(BBW),steer-by-wire(SBW),rear-wheel steering(RWS),active stabilizer bar(ASB)and active suspension system(ASS),greatly enhancing the controllable degrees of freedom compared to conventional chassis configurations.To advance research in chassis domain control,it is essential to understand how these heterogeneous execution systems influence vehicle dynamics.This paper focuses on the modeling and analysis of the lateral,longitudinal,and vertical chassis control and execution systems,-as well as their impact on vehicle lateral motion.Using a vehicle simulation platform,both the vehicle dynamics model and the individual dynamics models of each execution system were developed to analyze the influence of these systems on lateral dynamics.Additionally,a hierarchical control architecture was designed to control the vehicle’s lateral stability.The effectiveness of the proposed control scheme was demonstrated and validated through hardware-in-the-loop(HIL)tests and real-world vehicle testing.展开更多
The 53rd issue of Financial Innovation(FIN),Volume 11,No.5(2025),features 21 papers that can be classified into four main themes:the Special Issue on The Anomie of Artificial Intelligence(AI)in Finance:Bridging the Ga...The 53rd issue of Financial Innovation(FIN),Volume 11,No.5(2025),features 21 papers that can be classified into four main themes:the Special Issue on The Anomie of Artificial Intelligence(AI)in Finance:Bridging the Gap Between Technical Power and Human Wisdom,and Financial Markets and Investments,Economic and Policy Analysis,Corporate Governance and Related Market Dynamics.展开更多
The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicle...The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.展开更多
The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carr...The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.展开更多
The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and recip...The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.展开更多
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes...Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.展开更多
Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding app...Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding append devices like deflector and cab vane corner on heavy commercial vehicle drag reduction were investigated.For this purpose,the vehicle body structure was modeled with various supplementary parts at the first stage.Then,computational fluid dynamic(CFD) analysis was utilized for each case to enhance the optimal aerodynamic structure at different longitudinal speeds for heavy commercial vehicles.The results show that the most effective supplementary part is deflector,and by adding this part,the drag coefficient is decreased considerably at an optimum angle.By adding two cab vane corners at both frontal edges of cab,a significant drag reduction is noticed.Back vanes and base flaps are simple plates which can be added at the top and side end of container and at the bottom with specific angle respectively to direct the flow and prevent the turbulence.Through the analysis of airflow and pressure distribution,the results reveal that the cab vane reduces fuel consumption and drag coefficient by up to 20 % receptively using proper deflector angle.Finally,by adding all supplementary parts at their optimized positions,41% drag reduction is obtained compared to the simple model.展开更多
The Baiyun sag is a deep one developing on the slope of the Pearl River Mouth Basin. It occurs as a composite graben horizontally, and is composed of two sub-sags versus one low uplift. Vertically, the sedimentary arc...The Baiyun sag is a deep one developing on the slope of the Pearl River Mouth Basin. It occurs as a composite graben horizontally, and is composed of two sub-sags versus one low uplift. Vertically, the sedimentary architecture could be divided into three layers, i.e. the faulted layer on the bottom, the faulted-ductile stretching layer in the middle and the draping layer on the top. The main rifting stage of the sag is supposed to be characterized by ductile extension and thinning of the crust. The special deformation pattern is probably attributed to the fact that the Baiyun sag is located in the transfer zone of the pre-existing weak zone, which made the sag a strongly deformed area, characterized by the greatly thinned lithosphere and active magmatism. The highly rising mantle under the Baiyun sag should be an important mechanism responsible for the ductile deformation, which caused partial melting of the upper mantle. Upweiling to the upper crust and the sedimentary layers, the partial melting materials accommodated extensional strain and caused non-faulted vertical subsidence. Magma was collected under the transfer zone after the first stage of rifting, and transferred laterally in a direction perpendicular to the extension to the ENE and WSW parts of the sag and upwelled along the NW-trending basal faults, where WNW-trending shear faults developed in swarms. The faulting activity and sedimentation history of the Baiyun sag may have been affected by the ocean ridge jump around 24 Ma and the cessation of sea floor spreading around 16 Ma.展开更多
To analyze the parachute dynamics and stability characteristics of precision airdrop system, the fluid-structure interaction (FSI) dynamics coupling with the flight trajectory of a para- chute payload system is comp...To analyze the parachute dynamics and stability characteristics of precision airdrop system, the fluid-structure interaction (FSI) dynamics coupling with the flight trajectory of a para- chute payload system is comprehensively predicted by numerical methods. The inflation behavior of a disk-gap-band parachute is specifically investigated using the arbitrary Lagrangian Euler (ALE) penalty coupling method. With the available aerodynamic data obtained from the FSI sim- ulation, a nine-degree-of-freedom (9DOF) dynamic model of a parachute-payload system is built and solved to simulate the descent trajectory of the multi-body dynamic system. Finally, a linear five-degree-of-freedom (5DOF) dynamic model is developed, the perturbation characteristics and the motion laws of the parachute and payload under a wind gust are analyzed by the linearization method and verified by a comparison with flight test data. The results of airdrop test demonstrate that our method can be further applied to the guidance and control of precision airdrop systems.展开更多
Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(...Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(BCI), Panama,divided into 1250(20 m × 20 m) quadrats.Methods, spatial analysis: Total beta diversity was measured as the total variance of the Hellinger-transformed community data throughout the BCI plot. Total beta was partitioned into contributions of individual sites(LCBD indices), which were tested for significance and mapped.Results, spatial analysis: LCBD indices indicated the sites with exceptional community composition. In 1985,they were mostly found in the swamp habitat. In the 2015 survey, none of the swamp quadrats had significant LCBDs.What happened to the tree community in the interval?Methods, temporal analysis: The dissimilarity in community composition in each quadrat was measured between time 1(1985) and time 2(2015). Temporal Beta Indices(TBI) were computed from abundance and presence-absence data and tested for significance. TBI indices can be decomposed into B = species(or abundances-per-species) losses and C = species(or abundances-per-species) gains. B-C plots were produced; they display visually the relative importance of the loss and gain components, through time, across the sites.Results, temporal analysis: In BCI, quadrats with significant TBI indices were found in the swamp area, which is shrinking in importance due to changes to the local climate. A published habitat classification divided the BCI forest plot into six habitat zones. Graphs of the B and C components were produced for each habitat group. Group 4(the swamp) was dominated by species(and abundances-per-species) gains whereas the five other habitat groups were dominated by losses, some groups more than others.Conclusions: We identified the species that had changed the most in abundances in the swamp between T1 and T2.This analysis supported the hypothesis that the swamp is drying out and is invaded by species from the surrounding area. Analysis of the B and C components of temporal beta diversity bring us to the heart of the mechanisms of community change through time: losses(B) and gains(C) of species, losses and gains of individuals of various species. TBI analysis is especially interesting in species-rich communities where we cannot examine the changes in every species individually.展开更多
A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code,and the results are compared with experimental data and with the results of a panel method analysis.Two ship models have be...A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code,and the results are compared with experimental data and with the results of a panel method analysis.Two ship models have been used in the interaction forces analysis:a tug and a tanker,advancing parallel to each other with different lateral distances and two different values of the fluid depth.Computations are carried out with four different flow models:inviscid and viscous flow with the free surface modeled as a rigid wall and inviscid and viscous flow with the deformable free surface.A fair agreement was obtained with available experimental data and results obtained by panel method.The influence of viscosity in the computations is found to be comparatively weak,while the wavemaking effects may be important,at small magnitude of the horizontal clearance.展开更多
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num...Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.展开更多
In this paper, an analytical scientific approach is presented for the design and analysis of an air-turbine-driven paint spray spindle, and it is used to improve further the design concept of the existing spindle appl...In this paper, an analytical scientific approach is presented for the design and analysis of an air-turbine-driven paint spray spindle, and it is used to improve further the design concept of the existing spindle applied in automotive coating and paint spraying applications. The current spindle on the market can operate at a maximum speed of 100,000 rpm and features a maximum bell size of 70 mm diameter. Given the increasing demands for high automotive coating/painting quality and productivity in assembly, the design and development of a paint spray spindle with a speed of 145,000 rpm or higher is needed. Computational fluid dynamics(CFD)-based simulation is applied in the approach. Accordingly, CFD simulation-based design and analysis are undertaken, covering the characteristic factors of velocity, pressure of the air supply, rotational speed of the air-turbine, and torque and force reaction on the turbine blades. Furthermore, the turbine blade geometric shape is investigated through the simulations. Three geometrical concepts have been investigated against the original model. The results on Concept_03 verified the higher angular velocity speeds against the theoretical model. The pressure and velocity effects in the blades have been investigated. The results show that the pressure and velocity of the air supply driving the turbine are critical factors influencing the stability of turbine spinning. The results also demonstrate that the force acting on the blades is at the highest level when the adjacent face changes from a straight surface into a curve. Finally, changing the geometrical shape in the turbine likely increases the tangential air pressure at the blades surface and relatively increases the magnitude of the lateral torque and force in the spindle. Notwithstanding this condition, the analytical values surpass the theoretical target values.展开更多
文摘The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.
文摘Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).
基金“Strategic Cooperation of Science and Technology between Nanchong City and Southwest Petroleum University 2018” Special Fund Project,China(Nos.18SXHZ0030,18SXHZ0054)
文摘To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system based on slicing reverse method was proposed.The flow characteristics were found out through CFD,and the velocity vector field,pressure field and turbulent kinetic energy field for different valve lifts were discussed,which were in good agreement with experimental data,and the quality of reconstruction was evaluated.In order to improve its flow characteristic,an optimization plan was proposed.The results show that the flow characteristics after optimization are obviously improved.The results can provide a reference for the design and optimization of the intake system of cylinder head.
基金Supported by National Nature Science Foundation of China(Grant Nos.52325212,52372394)National Key Research and Development Program of China(Grant Nos.2022YFE0117100,2021YFB2501201)+1 种基金Industry-University-Research Innovation Fund for Chinese Universities(Grand No.2024HT010)Fundamental Research Funds for the Central Universities.
文摘Chassis-by-wire technology has gained significant attention,with the scope of chassis domain control expanding from traditional two-dimensional plane motion control to encompass three-dimensional space motion control.Modern chassis-by-wire systems manage an increasing number of heterogeneous chassis execution systems,including distributed drive,all-wheel drive(AWD),brake-by-wire(BBW),steer-by-wire(SBW),rear-wheel steering(RWS),active stabilizer bar(ASB)and active suspension system(ASS),greatly enhancing the controllable degrees of freedom compared to conventional chassis configurations.To advance research in chassis domain control,it is essential to understand how these heterogeneous execution systems influence vehicle dynamics.This paper focuses on the modeling and analysis of the lateral,longitudinal,and vertical chassis control and execution systems,-as well as their impact on vehicle lateral motion.Using a vehicle simulation platform,both the vehicle dynamics model and the individual dynamics models of each execution system were developed to analyze the influence of these systems on lateral dynamics.Additionally,a hierarchical control architecture was designed to control the vehicle’s lateral stability.The effectiveness of the proposed control scheme was demonstrated and validated through hardware-in-the-loop(HIL)tests and real-world vehicle testing.
文摘The 53rd issue of Financial Innovation(FIN),Volume 11,No.5(2025),features 21 papers that can be classified into four main themes:the Special Issue on The Anomie of Artificial Intelligence(AI)in Finance:Bridging the Gap Between Technical Power and Human Wisdom,and Financial Markets and Investments,Economic and Policy Analysis,Corporate Governance and Related Market Dynamics.
基金funded by the“Hundred Outstanding Talents”Support Program of Jining University,a provincial-level key project in the field of natural sciences,grant number 2023ZYRC23Jining Key R&D Program(Soft Science)Project,No.2024JNZC010Shandong Province Key Research and Development Program(Technology-Based Small and Medium-sized Enterprises Innovation Capability Improvement)Project No.2025TSGCCZZB0679.
文摘The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.
基金National Natural Science Foundation of China(60475039)
文摘The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.
基金Supported by the National Natural Science Foundation of China (50375071)the Jiangsu Province Key Lab on Digital Manufacture Project (HGDML-0604)~~
文摘The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.
基金This paper was supported by Chinese 863 Plan Water-Saving Agriculture (2002AA2Z4321),the Key Knowledge Innovation Project (SCXZY0103) and The Tenth-five Plan of Liaoning Province (2001212001).
文摘Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.
文摘Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding append devices like deflector and cab vane corner on heavy commercial vehicle drag reduction were investigated.For this purpose,the vehicle body structure was modeled with various supplementary parts at the first stage.Then,computational fluid dynamic(CFD) analysis was utilized for each case to enhance the optimal aerodynamic structure at different longitudinal speeds for heavy commercial vehicles.The results show that the most effective supplementary part is deflector,and by adding this part,the drag coefficient is decreased considerably at an optimum angle.By adding two cab vane corners at both frontal edges of cab,a significant drag reduction is noticed.Back vanes and base flaps are simple plates which can be added at the top and side end of container and at the bottom with specific angle respectively to direct the flow and prevent the turbulence.Through the analysis of airflow and pressure distribution,the results reveal that the cab vane reduces fuel consumption and drag coefficient by up to 20 % receptively using proper deflector angle.Finally,by adding all supplementary parts at their optimized positions,41% drag reduction is obtained compared to the simple model.
文摘The Baiyun sag is a deep one developing on the slope of the Pearl River Mouth Basin. It occurs as a composite graben horizontally, and is composed of two sub-sags versus one low uplift. Vertically, the sedimentary architecture could be divided into three layers, i.e. the faulted layer on the bottom, the faulted-ductile stretching layer in the middle and the draping layer on the top. The main rifting stage of the sag is supposed to be characterized by ductile extension and thinning of the crust. The special deformation pattern is probably attributed to the fact that the Baiyun sag is located in the transfer zone of the pre-existing weak zone, which made the sag a strongly deformed area, characterized by the greatly thinned lithosphere and active magmatism. The highly rising mantle under the Baiyun sag should be an important mechanism responsible for the ductile deformation, which caused partial melting of the upper mantle. Upweiling to the upper crust and the sedimentary layers, the partial melting materials accommodated extensional strain and caused non-faulted vertical subsidence. Magma was collected under the transfer zone after the first stage of rifting, and transferred laterally in a direction perpendicular to the extension to the ENE and WSW parts of the sag and upwelled along the NW-trending basal faults, where WNW-trending shear faults developed in swarms. The faulting activity and sedimentation history of the Baiyun sag may have been affected by the ocean ridge jump around 24 Ma and the cessation of sea floor spreading around 16 Ma.
基金co-supported by Research Project of Chinese National University of Defense Technology(No.:JC13-0104)the National Natural Science Foundation of China(Nos.:51375486 and 11272345)the found support from China Scholarship Council(CSC)
文摘To analyze the parachute dynamics and stability characteristics of precision airdrop system, the fluid-structure interaction (FSI) dynamics coupling with the flight trajectory of a para- chute payload system is comprehensively predicted by numerical methods. The inflation behavior of a disk-gap-band parachute is specifically investigated using the arbitrary Lagrangian Euler (ALE) penalty coupling method. With the available aerodynamic data obtained from the FSI sim- ulation, a nine-degree-of-freedom (9DOF) dynamic model of a parachute-payload system is built and solved to simulate the descent trajectory of the multi-body dynamic system. Finally, a linear five-degree-of-freedom (5DOF) dynamic model is developed, the perturbation characteristics and the motion laws of the parachute and payload under a wind gust are analyzed by the linearization method and verified by a comparison with flight test data. The results of airdrop test demonstrate that our method can be further applied to the guidance and control of precision airdrop systems.
基金support of the U.S. National Science Foundation (awards 8206992, 8906869, 9405933, 9909947, 0948585 to S.P. Hubbell)the John D. and Catherine D. McArthur Foundation+1 种基金the Smithsonian Tropical Research Institutesupported by research grant #7738 from the Natural Sciences and Engineering Research Council of Canada (NSERC) to P. Legendre
文摘Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(BCI), Panama,divided into 1250(20 m × 20 m) quadrats.Methods, spatial analysis: Total beta diversity was measured as the total variance of the Hellinger-transformed community data throughout the BCI plot. Total beta was partitioned into contributions of individual sites(LCBD indices), which were tested for significance and mapped.Results, spatial analysis: LCBD indices indicated the sites with exceptional community composition. In 1985,they were mostly found in the swamp habitat. In the 2015 survey, none of the swamp quadrats had significant LCBDs.What happened to the tree community in the interval?Methods, temporal analysis: The dissimilarity in community composition in each quadrat was measured between time 1(1985) and time 2(2015). Temporal Beta Indices(TBI) were computed from abundance and presence-absence data and tested for significance. TBI indices can be decomposed into B = species(or abundances-per-species) losses and C = species(or abundances-per-species) gains. B-C plots were produced; they display visually the relative importance of the loss and gain components, through time, across the sites.Results, temporal analysis: In BCI, quadrats with significant TBI indices were found in the swamp area, which is shrinking in importance due to changes to the local climate. A published habitat classification divided the BCI forest plot into six habitat zones. Graphs of the B and C components were produced for each habitat group. Group 4(the swamp) was dominated by species(and abundances-per-species) gains whereas the five other habitat groups were dominated by losses, some groups more than others.Conclusions: We identified the species that had changed the most in abundances in the swamp between T1 and T2.This analysis supported the hypothesis that the swamp is drying out and is invaded by species from the surrounding area. Analysis of the B and C components of temporal beta diversity bring us to the heart of the mechanisms of community change through time: losses(B) and gains(C) of species, losses and gains of individuals of various species. TBI analysis is especially interesting in species-rich communities where we cannot examine the changes in every species individually.
基金the project PTDC/EMSTRA/5628/2014 "Maneuvering and moored ships in ports-physical and numerical modeling,"funded by the Portuguese Foundation for Science and Technology(FCT)financed by FCT under contract number SFRH/BD/67070/2009
文摘A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code,and the results are compared with experimental data and with the results of a panel method analysis.Two ship models have been used in the interaction forces analysis:a tug and a tanker,advancing parallel to each other with different lateral distances and two different values of the fluid depth.Computations are carried out with four different flow models:inviscid and viscous flow with the free surface modeled as a rigid wall and inviscid and viscous flow with the deformable free surface.A fair agreement was obtained with available experimental data and results obtained by panel method.The influence of viscosity in the computations is found to be comparatively weak,while the wavemaking effects may be important,at small magnitude of the horizontal clearance.
基金National Natural Science Foundation of China (No.50435030)
文摘Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.
基金the PhD Scholarship Support at Brunel University London
文摘In this paper, an analytical scientific approach is presented for the design and analysis of an air-turbine-driven paint spray spindle, and it is used to improve further the design concept of the existing spindle applied in automotive coating and paint spraying applications. The current spindle on the market can operate at a maximum speed of 100,000 rpm and features a maximum bell size of 70 mm diameter. Given the increasing demands for high automotive coating/painting quality and productivity in assembly, the design and development of a paint spray spindle with a speed of 145,000 rpm or higher is needed. Computational fluid dynamics(CFD)-based simulation is applied in the approach. Accordingly, CFD simulation-based design and analysis are undertaken, covering the characteristic factors of velocity, pressure of the air supply, rotational speed of the air-turbine, and torque and force reaction on the turbine blades. Furthermore, the turbine blade geometric shape is investigated through the simulations. Three geometrical concepts have been investigated against the original model. The results on Concept_03 verified the higher angular velocity speeds against the theoretical model. The pressure and velocity effects in the blades have been investigated. The results show that the pressure and velocity of the air supply driving the turbine are critical factors influencing the stability of turbine spinning. The results also demonstrate that the force acting on the blades is at the highest level when the adjacent face changes from a straight surface into a curve. Finally, changing the geometrical shape in the turbine likely increases the tangential air pressure at the blades surface and relatively increases the magnitude of the lateral torque and force in the spindle. Notwithstanding this condition, the analytical values surpass the theoretical target values.