By the method of dynamical system, we construct the exact travelling wave solu- tions of a new Hamiltonian amplitude equation and the Ostrovsky equation. Based on this method, the new exact travelling wave solutions o...By the method of dynamical system, we construct the exact travelling wave solu- tions of a new Hamiltonian amplitude equation and the Ostrovsky equation. Based on this method, the new exact travelling wave solutions of the new Hamiltonian am- plitude equation and the Ostrovsky equation, such as solitary wave solutions, kink and anti-kink wave solutions and periodic travelling wave solutions, are obtained, respectively.展开更多
By using the dynamical system method to study the 2D-generalized Benney- Luke equation, the existence of kink wave solutions and uncountably infinite many smooth periodic wave solutions is shown. Explicit exact parame...By using the dynamical system method to study the 2D-generalized Benney- Luke equation, the existence of kink wave solutions and uncountably infinite many smooth periodic wave solutions is shown. Explicit exact parametric representations for solutions of kink wave, periodic wave and unbounded traveling wave are obtained.展开更多
In this paper, we study the traveling wave solutions of the fractional generalized reaction Duffing equation, which contains several nonlinear conformable time fractional wave equations. By the dynamic system method, ...In this paper, we study the traveling wave solutions of the fractional generalized reaction Duffing equation, which contains several nonlinear conformable time fractional wave equations. By the dynamic system method, the phase portraits of the fractional generalized reaction Duffing equation are given, and all possible exact traveling wave solutions of the equation are obtained.展开更多
By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric spa...By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.展开更多
文摘By the method of dynamical system, we construct the exact travelling wave solu- tions of a new Hamiltonian amplitude equation and the Ostrovsky equation. Based on this method, the new exact travelling wave solutions of the new Hamiltonian am- plitude equation and the Ostrovsky equation, such as solitary wave solutions, kink and anti-kink wave solutions and periodic travelling wave solutions, are obtained, respectively.
基金the National Natural Science Foundation of China(Nos.10671179 and 10772158)
文摘By using the dynamical system method to study the 2D-generalized Benney- Luke equation, the existence of kink wave solutions and uncountably infinite many smooth periodic wave solutions is shown. Explicit exact parametric representations for solutions of kink wave, periodic wave and unbounded traveling wave are obtained.
文摘In this paper, we study the traveling wave solutions of the fractional generalized reaction Duffing equation, which contains several nonlinear conformable time fractional wave equations. By the dynamic system method, the phase portraits of the fractional generalized reaction Duffing equation are given, and all possible exact traveling wave solutions of the equation are obtained.
文摘By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.