The necessity of improving the air traffic and reducing the aviation emissions drives to investigate automatic steering for aircraft to effectively roll on the ground. This paper addresses the path following control p...The necessity of improving the air traffic and reducing the aviation emissions drives to investigate automatic steering for aircraft to effectively roll on the ground. This paper addresses the path following control problem of aircraft-on-ground and focuses on the task that the aircraft is required to follow the desired path on the runway by nose wheel automatic steering. The proposed approach is based on dynamical adaptive backstepping so that the system model does not have to be transformed into a canonical triangular form which is necessary in conventional backstepping design. This adaptive controller performs well despite the lack of information on the aerodynamic load and the tire cornering stiffness parameters. Simulation results clearly demonstrate the advantages and effectiveness of the proposed approach.展开更多
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ...The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.展开更多
In this paper, based on the invaxiance principle of differential equations, we propose a simple adaptive control method to synchronize the network with coupling of the general form. Comparing with other control approa...In this paper, based on the invaxiance principle of differential equations, we propose a simple adaptive control method to synchronize the network with coupling of the general form. Comparing with other control approaches, this scheme only depends on each node's state output. So we need not to know the concrete network structure and the solutions of the isolate nodes of the network in advance. In order to demonstrate the effectiveness of the method, a special example is provided and numerical simulations are performed. The numerical results show that our control scheme is very effective and robust against the weak noise.展开更多
This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust cont...This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.展开更多
A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical syn...A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical synchronization and all the closed-loop signals are bounded. Furthermore, the coupling matrix is not assumed to be symmetric or irreducible and asymptotical synchronization can be achieved even when the graph of network is not connected. Finally, a simulation example shows the feasibility and effectiveness of the approach.展开更多
Dynamic adaptability is a key feature in biological macromolecules,enabling selective binding and catalysis[1].From DNA supercoiling to enzyme conformational changes,biological systems have evolved intricate ways to d...Dynamic adaptability is a key feature in biological macromolecules,enabling selective binding and catalysis[1].From DNA supercoiling to enzyme conformational changes,biological systems have evolved intricate ways to dynamically adjust their structures to accommodate functional needs.Mimicking this adaptability in synthetic systems is an ongoing challenge in supramolecular chemistry.展开更多
A cable-driven redundant manipulator(CDRM)characterized by redundant degrees of freedom and a lightweight,slender design can perform tasks in confined and restricted spaces efficiently.However,the complex multistage c...A cable-driven redundant manipulator(CDRM)characterized by redundant degrees of freedom and a lightweight,slender design can perform tasks in confined and restricted spaces efficiently.However,the complex multistage coupling between drive cables and passive joints in CDRM leads to a challenging dynamic model with difficult parameter identification,complicating the efforts to achieve accurate modeling and control.To address these challenges,this paper proposes a dynamic modeling and adaptive control approach tailored for CDRM systems.A multilevel kinematic model of the cable-driven redundant manipulator is presented,and a screw theory is employed to represent the cable tension and cable contact forces as spatial wrenches,which are equivalently mapped to joint torque using the principle of virtual work.This approach simplifies the mapping process while maintaining the integrity of the dynamic model.A recursive method is used to compute cable tension section-by-section for enhancing the efficiency of inverse dynamics calculations and meeting the high-frequency demands of the controller,thereby avoiding large matrix operations.An adaptive control method is proposed building on this foundation,which involves the design of a dynamic parameter adaptive controller in the joint space to simplify the linearization process of the dynamic equations along with a closed-loop controller that incorporates motor parameters in the driving space.This approach improves the control accuracy and dynamic performance of the CDRM under dynamic uncertainties.The accuracy and computational efficiency of the dynamic model are validated through simulations,and the effectiveness of the proposed control method is demonstrated through control tests.This paper presents a dynamic modeling and adaptive control approach for CDRM to enhance accuracy and performance under dynamic uncertainties.展开更多
Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we pr...Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.展开更多
To address the issues of single warning indicators,fixed thresholds,and insufficient adaptability in coal and gas outburst early warning models,this study proposes a dynamic early warning model for gas outbursts based...To address the issues of single warning indicators,fixed thresholds,and insufficient adaptability in coal and gas outburst early warning models,this study proposes a dynamic early warning model for gas outbursts based on adaptive fractal dimension characterization.By analyzing the nonlinear characteristics of gas concentration data,an adaptive window fractal analysis method is introduced.Combined with boxcounting dimension and variation of box dimension metrics,a cross-scale dynamic warning model for disaster prevention is established.The implementation involves three key phases:First,wavelet denoising and interpolation methods are employed for raw data preprocessing,followed by validation of fractal characteristics.Second,an adaptive window cross-scale fractal dimension method is proposed to calculate the box-counting dimension of gas concentration,enabling effective capture of multi-scale complex features.Finally,dynamic threshold partitioning is achieved through membership functions and the 3σprinciple,establishing a graded classification standard for the mine gas disaster(MGD)index.Validated through engineering applications at Shoushan#1 Coal Mine in Henan Province,the results demonstrate that the adaptive window fractal dimension curve exhibits significantly enhanced fluctuation characteristics compared to fixed window methods,with local feature detection capability improved and warning accuracy reaching 86.9%.The research reveals that this model effectively resolves the limitations of traditional methods in capturing local features and dependency on subjective thresholds through multiindicator fusion and threshold optimization,providing both theoretical foundation and practical tool for coal mine gas outburst early warning.展开更多
To realize dynamic statistical publishing and protection of location-based data privacy,this paper proposes a differential privacy publishing algorithm based on adaptive sampling and grid clustering and adjustment.The...To realize dynamic statistical publishing and protection of location-based data privacy,this paper proposes a differential privacy publishing algorithm based on adaptive sampling and grid clustering and adjustment.The PID control strategy is combined with the difference in data variation to realize the dynamic adjustment of the data publishing intervals.The spatial-temporal correlations of the adjacent snapshots are utilized to design the grid clustering and adjustment algorithm,which facilitates saving the execution time of the publishing process.The budget distribution and budget absorption strategies are improved to form the sliding window-based differential privacy statistical publishing algorithm,which realizes continuous statistical publishing and privacy protection and improves the accuracy of published data.Experiments and analysis on large datasets of actual locations show that the privacy protection algorithm proposed in this paper is superior to other existing algorithms in terms of the accuracy of adaptive sampling time,the availability of published data,and the execution efficiency of data publishing methods.展开更多
Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may ...Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.展开更多
Gaze estimation,a crucial non-verbal communication cue,has achieved remarkable progress through convolutional neural networks.However,accurate gaze prediction in uncon-strained environments,particularly in extreme hea...Gaze estimation,a crucial non-verbal communication cue,has achieved remarkable progress through convolutional neural networks.However,accurate gaze prediction in uncon-strained environments,particularly in extreme head poses,partial occlusions,and abnormal lighting,remains challenging.Existing models often struggle to effectively focus on discriminative ocular features,leading to suboptimal performance.To address these limitations,this paper proposes dual-branch gaze estimation with Gaussian mixture distribution heatmaps and dynamic adaptive loss function(DMGDL),a novel dual-branch gaze estimation algorithm.By introducing Gaussian mixture distribution heatmaps centered on pupil positions as spatial attention guides,the model is enabled to prioritize ocular regions.Additionally,a dual-branch network architecture is designed to separately extract features for yaw and pitch angles,enhancing flexibility and mitigating cross-angle interference.A dynamic adaptive loss function is further formulated to address discontinuities in angle estimation,improving robustness and convergence stability.Experimental evaluations on three benchmark datasets demonstrate that DMGDL outperforms state-of-the-art methods,achiev-ing a mean angular error of 3.98°on the Max-Planck institute for informatics face gaze(MPI-IFaceGaze)dataset,10.21°on the physically unconstrained gaze estimation in the wild(Gaze360)dataset and 6.14°on the real-time eye gaze estimation in natural environments(RT-Gene)dataset,exhibiting superior generalization and robustness.展开更多
In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others...In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.展开更多
Virtual coupling(VC) is an emerging technology for addressing the shortage of rail transportation capacity. As a crucial enabling technology, the VC-specific acquisition of train information, especially train followin...Virtual coupling(VC) is an emerging technology for addressing the shortage of rail transportation capacity. As a crucial enabling technology, the VC-specific acquisition of train information, especially train following distance(TFD), is underdeveloped.In this paper, a novel method is proposed to acquire real-time TFD by analyzing the vibration response of the front and following trains, during which only onboard accelerometers and speedometers are required. In contrast to the traditional arts of train positioning, this method targets a relative position between two adjacent trains in VC operation, rather than the global positions of the trains. For this purpose, an adaptive system containing three strategies is designed to cope with possible adverse factors in train operation. A vehicle dynamics simulation of a heavy-haul railway is implemented for the evaluation of feasibility and performance. Furthermore, a validation is conducted using a set of data measured from in-service Chinese high-speed trains. The results indicate the method achieves satisfactory estimation accuracy using both simulated and actual data. It has favorable adaptability to various uncertainties possibly encountered in train operation. Additionally, the method is preliminarily proven to adapt to different locomotive types and even different rail transportation modes. In general, such a method with good performance, low-cost, and easy implementation is promising to apply.展开更多
In this paper, we investigate the locally and globally adaptive synchronization problem for an uncertain complex dynamical network with time-varying coupling delays based on the decentralized control. The coupling ter...In this paper, we investigate the locally and globally adaptive synchronization problem for an uncertain complex dynamical network with time-varying coupling delays based on the decentralized control. The coupling terms here are bounded by high-order polynomials with known gains that are ubiquitous in a large class of complex dynamical networks. We generalize the usual technology of searching for an appropriate coordinates transformation to change the network dynamics into a series of decoupled lower-dimensional systems. Several adaptive synchronization criteria are derived by constructing the Lyapunov-Krasovskii functional and Barbalat lemma, and the proposed criteria are simple in form and convenient for the practical engineering design. Numerical simulations illustrated by a nearest-neighbor coupling network verify the effectiveness of the proposed synchronization scheme.展开更多
Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitor...Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several poi...An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several pointwise values within each computational cell as the predicted variables to build high-order schemes based on single-cell reconstruction. Two types of moments, such as the volume-integrated average(VIA) and point value(PV), are defined as constraint conditions to derive the updating formulations of the unknowns, and the constraint condition on VIA guarantees the rigorous conservation of the proposed model. In this study, the MCV scheme is implemented on a height-based, terrainfollowing grid with variable resolution to solve the nonhydrostatic governing equations of atmospheric dynamics. The AMR grid of Berger-Oliger consists of several groups of blocks with different resolutions, where the MCV model developed on a fixed structured mesh can be used directly. Numerical formulations are designed to implement the coarsefine interpolation and the flux correction for properly exchanging the solution information among different blocks. Widely used benchmark tests are carried out to evaluate the proposed model. The numerical experiments on uniform and AMR grids indicate that the adaptive model has promising potential for improving computational efficiency without losing accuracy.展开更多
Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation...Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation shows that this new method makes the optimization perfectly and convergence quickly.展开更多
基金the National Nature Science Foundation for Distinguished Young Scholars of China(Grant No.50825502)
文摘The necessity of improving the air traffic and reducing the aviation emissions drives to investigate automatic steering for aircraft to effectively roll on the ground. This paper addresses the path following control problem of aircraft-on-ground and focuses on the task that the aircraft is required to follow the desired path on the runway by nose wheel automatic steering. The proposed approach is based on dynamical adaptive backstepping so that the system model does not have to be transformed into a canonical triangular form which is necessary in conventional backstepping design. This adaptive controller performs well despite the lack of information on the aerodynamic load and the tire cornering stiffness parameters. Simulation results clearly demonstrate the advantages and effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (9071602860974106)
文摘The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472091, 10502042 and 10332030) Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No Z200655)
文摘In this paper, based on the invaxiance principle of differential equations, we propose a simple adaptive control method to synchronize the network with coupling of the general form. Comparing with other control approaches, this scheme only depends on each node's state output. So we need not to know the concrete network structure and the solutions of the isolate nodes of the network in advance. In order to demonstrate the effectiveness of the method, a special example is provided and numerical simulations are performed. The numerical results show that our control scheme is very effective and robust against the weak noise.
基金Project supported by the Funds for Creative Research Groups of China(Grant No.60821063)the National Basic Research Program of China(Grant No.2009CB320604)+2 种基金the National Natural Science Foundation of China(Grant No.60974043)the 111 Project(Grant No.B08015)the Science and Technology Research Project of the Educational Department of Liaoning Province of China(Grant No.2008S156)
文摘This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.
基金supported by Ph.D.Programs Foundation of Ministry of Education of China(Nos.JY0300137002 and20130203110021)Research Funds for the Central Universities(No.JB142001-6)
文摘A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical synchronization and all the closed-loop signals are bounded. Furthermore, the coupling matrix is not assumed to be symmetric or irreducible and asymptotical synchronization can be achieved even when the graph of network is not connected. Finally, a simulation example shows the feasibility and effectiveness of the approach.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)
基金the Natural Science Foundation of China(No.22301131)the Natural Science Foundation of Jiangsu Province(Nos.BK20220781,BK20240679)the National Key Research and Development Program of China(No.2024YFB3815700)are greatly acknowledged.
文摘Dynamic adaptability is a key feature in biological macromolecules,enabling selective binding and catalysis[1].From DNA supercoiling to enzyme conformational changes,biological systems have evolved intricate ways to dynamically adjust their structures to accommodate functional needs.Mimicking this adaptability in synthetic systems is an ongoing challenge in supramolecular chemistry.
基金Supported by National Natural Science Foundation of China(Grant No.52405040)Research Project of State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202514)。
文摘A cable-driven redundant manipulator(CDRM)characterized by redundant degrees of freedom and a lightweight,slender design can perform tasks in confined and restricted spaces efficiently.However,the complex multistage coupling between drive cables and passive joints in CDRM leads to a challenging dynamic model with difficult parameter identification,complicating the efforts to achieve accurate modeling and control.To address these challenges,this paper proposes a dynamic modeling and adaptive control approach tailored for CDRM systems.A multilevel kinematic model of the cable-driven redundant manipulator is presented,and a screw theory is employed to represent the cable tension and cable contact forces as spatial wrenches,which are equivalently mapped to joint torque using the principle of virtual work.This approach simplifies the mapping process while maintaining the integrity of the dynamic model.A recursive method is used to compute cable tension section-by-section for enhancing the efficiency of inverse dynamics calculations and meeting the high-frequency demands of the controller,thereby avoiding large matrix operations.An adaptive control method is proposed building on this foundation,which involves the design of a dynamic parameter adaptive controller in the joint space to simplify the linearization process of the dynamic equations along with a closed-loop controller that incorporates motor parameters in the driving space.This approach improves the control accuracy and dynamic performance of the CDRM under dynamic uncertainties.The accuracy and computational efficiency of the dynamic model are validated through simulations,and the effectiveness of the proposed control method is demonstrated through control tests.This paper presents a dynamic modeling and adaptive control approach for CDRM to enhance accuracy and performance under dynamic uncertainties.
基金supported in part by the National Key Research and Development Program of China(2024YFB4709100,2021YFE0206100)the National Natural Science Foundation of China(62073321)+1 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029)the Science and Technology Development Fund,Macao SAR,China(0015/2020/AMJ)
文摘Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.
基金funded by the National Key Research and Development ProgramFund for Young Scientists(No.2021YFC2900400)+5 种基金the National Natural Science Foundation of China(No.52304123)Fundamental Research Funds for the Central Universities(No.2024CDJXY025)Sichuan-Chongqing Science and Technology Innovation Cooperation Program Project(No.CSTB2024TIAD-CYKJCXX0016)Postdoctoral Research Foundation of China(No.2023M730412)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(No.GZB20230914)Chongqing Outstanding Youth Science Foundation Program(No.CSTB2023NSCQ-JQX0027)。
文摘To address the issues of single warning indicators,fixed thresholds,and insufficient adaptability in coal and gas outburst early warning models,this study proposes a dynamic early warning model for gas outbursts based on adaptive fractal dimension characterization.By analyzing the nonlinear characteristics of gas concentration data,an adaptive window fractal analysis method is introduced.Combined with boxcounting dimension and variation of box dimension metrics,a cross-scale dynamic warning model for disaster prevention is established.The implementation involves three key phases:First,wavelet denoising and interpolation methods are employed for raw data preprocessing,followed by validation of fractal characteristics.Second,an adaptive window cross-scale fractal dimension method is proposed to calculate the box-counting dimension of gas concentration,enabling effective capture of multi-scale complex features.Finally,dynamic threshold partitioning is achieved through membership functions and the 3σprinciple,establishing a graded classification standard for the mine gas disaster(MGD)index.Validated through engineering applications at Shoushan#1 Coal Mine in Henan Province,the results demonstrate that the adaptive window fractal dimension curve exhibits significantly enhanced fluctuation characteristics compared to fixed window methods,with local feature detection capability improved and warning accuracy reaching 86.9%.The research reveals that this model effectively resolves the limitations of traditional methods in capturing local features and dependency on subjective thresholds through multiindicator fusion and threshold optimization,providing both theoretical foundation and practical tool for coal mine gas outburst early warning.
基金supported by National Nature Science Foundation of China(No.62361036)Nature Science Foundation of Gansu Province(No.22JR5RA279).
文摘To realize dynamic statistical publishing and protection of location-based data privacy,this paper proposes a differential privacy publishing algorithm based on adaptive sampling and grid clustering and adjustment.The PID control strategy is combined with the difference in data variation to realize the dynamic adjustment of the data publishing intervals.The spatial-temporal correlations of the adjacent snapshots are utilized to design the grid clustering and adjustment algorithm,which facilitates saving the execution time of the publishing process.The budget distribution and budget absorption strategies are improved to form the sliding window-based differential privacy statistical publishing algorithm,which realizes continuous statistical publishing and privacy protection and improves the accuracy of published data.Experiments and analysis on large datasets of actual locations show that the privacy protection algorithm proposed in this paper is superior to other existing algorithms in terms of the accuracy of adaptive sampling time,the availability of published data,and the execution efficiency of data publishing methods.
基金supported by the Science and Technology Program Project of Tianjin(No.24ZXZSSS00300).
文摘Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.
基金supported by the Key Project of the NationalLanguage Commission(No.ZDI145-110)the AcademicResearch Projects of Beijing Union University(No.ZK20202514)+1 种基金the Key Laboratory Project(No.YYZN-2024-6)the Project for the Construction and Support of High-Level Innovative Teams in Beijing Municipal Institutions(No.BPHR20220121).
文摘Gaze estimation,a crucial non-verbal communication cue,has achieved remarkable progress through convolutional neural networks.However,accurate gaze prediction in uncon-strained environments,particularly in extreme head poses,partial occlusions,and abnormal lighting,remains challenging.Existing models often struggle to effectively focus on discriminative ocular features,leading to suboptimal performance.To address these limitations,this paper proposes dual-branch gaze estimation with Gaussian mixture distribution heatmaps and dynamic adaptive loss function(DMGDL),a novel dual-branch gaze estimation algorithm.By introducing Gaussian mixture distribution heatmaps centered on pupil positions as spatial attention guides,the model is enabled to prioritize ocular regions.Additionally,a dual-branch network architecture is designed to separately extract features for yaw and pitch angles,enhancing flexibility and mitigating cross-angle interference.A dynamic adaptive loss function is further formulated to address discontinuities in angle estimation,improving robustness and convergence stability.Experimental evaluations on three benchmark datasets demonstrate that DMGDL outperforms state-of-the-art methods,achiev-ing a mean angular error of 3.98°on the Max-Planck institute for informatics face gaze(MPI-IFaceGaze)dataset,10.21°on the physically unconstrained gaze estimation in the wild(Gaze360)dataset and 6.14°on the real-time eye gaze estimation in natural environments(RT-Gene)dataset,exhibiting superior generalization and robustness.
基金supported by the Aeronautical Science Foundation of China(20220001057001)an Open Project of the National Key Laboratory of Air-based Information Perception and Fusion(202437)
文摘In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.
基金supported by the National Natural Science Foundation of China(52222217,52388102,52372435)the Major Science and TechnologyProject of China Energy(GJNY-22-7)
文摘Virtual coupling(VC) is an emerging technology for addressing the shortage of rail transportation capacity. As a crucial enabling technology, the VC-specific acquisition of train information, especially train following distance(TFD), is underdeveloped.In this paper, a novel method is proposed to acquire real-time TFD by analyzing the vibration response of the front and following trains, during which only onboard accelerometers and speedometers are required. In contrast to the traditional arts of train positioning, this method targets a relative position between two adjacent trains in VC operation, rather than the global positions of the trains. For this purpose, an adaptive system containing three strategies is designed to cope with possible adverse factors in train operation. A vehicle dynamics simulation of a heavy-haul railway is implemented for the evaluation of feasibility and performance. Furthermore, a validation is conducted using a set of data measured from in-service Chinese high-speed trains. The results indicate the method achieves satisfactory estimation accuracy using both simulated and actual data. It has favorable adaptability to various uncertainties possibly encountered in train operation. Additionally, the method is preliminarily proven to adapt to different locomotive types and even different rail transportation modes. In general, such a method with good performance, low-cost, and easy implementation is promising to apply.
基金supported by the National Natural Science Foundation of China (No.60574013, 60874024)the Australian Research Council,and Dogus University Fund for Science
文摘In this paper, we investigate the locally and globally adaptive synchronization problem for an uncertain complex dynamical network with time-varying coupling delays based on the decentralized control. The coupling terms here are bounded by high-order polynomials with known gains that are ubiquitous in a large class of complex dynamical networks. We generalize the usual technology of searching for an appropriate coordinates transformation to change the network dynamics into a series of decoupled lower-dimensional systems. Several adaptive synchronization criteria are derived by constructing the Lyapunov-Krasovskii functional and Barbalat lemma, and the proposed criteria are simple in form and convenient for the practical engineering design. Numerical simulations illustrated by a nearest-neighbor coupling network verify the effectiveness of the proposed synchronization scheme.
文摘Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金supported by The National Key Research and Development Program of China(Grants Nos.2017YFA0603901 and 2017YFC1501901)The National Natural Science Foundation of China(Grant No.41522504)。
文摘An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several pointwise values within each computational cell as the predicted variables to build high-order schemes based on single-cell reconstruction. Two types of moments, such as the volume-integrated average(VIA) and point value(PV), are defined as constraint conditions to derive the updating formulations of the unknowns, and the constraint condition on VIA guarantees the rigorous conservation of the proposed model. In this study, the MCV scheme is implemented on a height-based, terrainfollowing grid with variable resolution to solve the nonhydrostatic governing equations of atmospheric dynamics. The AMR grid of Berger-Oliger consists of several groups of blocks with different resolutions, where the MCV model developed on a fixed structured mesh can be used directly. Numerical formulations are designed to implement the coarsefine interpolation and the flux correction for properly exchanging the solution information among different blocks. Widely used benchmark tests are carried out to evaluate the proposed model. The numerical experiments on uniform and AMR grids indicate that the adaptive model has promising potential for improving computational efficiency without losing accuracy.
文摘Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation shows that this new method makes the optimization perfectly and convergence quickly.