期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
Lattice dynamical and thermodynamical properties of ReB_2,RuB_2,and OsB_2 compounds in the ReB_2 structure 被引量:1
1
作者 E.Deligoz K.Colakoglu Y.O.Ciftci 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期355-361,共7页
Structural and lattice dynamical properties of ReB2,RuB2,and OsB2 in the ReB2 structure are studied in the framework of density functional theory within the generalized gradient approximation.The present results show ... Structural and lattice dynamical properties of ReB2,RuB2,and OsB2 in the ReB2 structure are studied in the framework of density functional theory within the generalized gradient approximation.The present results show that these compounds are dynamically stable for the considered structure.The temperature-dependent behaviors of thermodynamical properties such as internal energy,free energy,entropy,and heat capacity are also presented.The obtained results are in good agreement with the available experimental and theoretical data. 展开更多
关键词 ab initio calculations lattice dynamical properties thermodynamical properties DIBORIDES
原文传递
Effects of non-Gaussian noise on the dynamical properties of a logistic system
2
作者 王参军 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期228-232,共5页
The dynamical properties of a tumor cell growth system described by the logistic system with coupling between non- Gaussian and Gaussian noise terms are investigated. The effects of the nonextensive index q on the sta... The dynamical properties of a tumor cell growth system described by the logistic system with coupling between non- Gaussian and Gaussian noise terms are investigated. The effects of the nonextensive index q on the stationary properties and the transient properties are discussed, respectively. The results show that the nonextensive index q can induce the tumor cell numbers to decrease greatly in the case of q 〉 1. Moreover, the switch from the steady stable state to the extinct state is speeded up as the increases of q, and the tumor cell numbers can be more obviously restrained for a large value of q. The numerical results are found to be in basic agreement with the theoretical predictions. 展开更多
关键词 logistic growth system non-Gaussian noise dynamical properties
原文传递
Ab initio study of dynamical properties of U-Nb alloy melt
3
作者 Yong-Peng Shi Ming-Feng Liu +6 位作者 Yun Chen Wen-Lin Mo Dian-Zhong Li Tao Fa Bin Bai Xiao-Lin Wang Xing-Qiu Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期515-522,共8页
The U-Nb alloy,as a kind of nuclear material with good corrosion resistance and mechanical properties,plays an important role in the nuclear industry.However,the experimental measurements and theoretical calculations ... The U-Nb alloy,as a kind of nuclear material with good corrosion resistance and mechanical properties,plays an important role in the nuclear industry.However,the experimental measurements and theoretical calculations of many parameters which are essential in describing the dynamical properties of this alloy melt,including density,diffusivity,and viscosity,have not been carried out yet.The lack of data on the dynamical properties of nuclear materials seriously hinders the high-performance nuclear materials from being developed and applied.In this work,the dynamical properties of the U-Nb alloy melt are systematically studied by means of ab initio molecular dynamics simulations and their corresponding mathematical models are established,thereby being able to rapidly calculate the densities,diffusion coefficients,viscosities,and their activation energies in the whole U-Nb liquid region.This work provides a new idea for investigating the dynamical properties of binary alloy melts,thereby promoting the development of melt research. 展开更多
关键词 U-Nb alloy melt dynamical properties ab initio study
原文传递
Impact of local field correction on transport and dynamic properties of warm dense matter
4
作者 S.K.Kodanova T.S.Ramazanov M.K.Issanova 《Matter and Radiation at Extremes》 2025年第3期89-97,共9页
A plasma screening model that accounts for electronic exchange-correlation effects and ionic nonideality in dense quantum plasmas is proposed.This model can be used as an input in various plasma interaction models to ... A plasma screening model that accounts for electronic exchange-correlation effects and ionic nonideality in dense quantum plasmas is proposed.This model can be used as an input in various plasma interaction models to calculate scattering cross-sections and transport properties.The applicability of the proposed plasma screening model is demonstrated using the example of the temperature relaxation rate in dense hydrogen and warm dense aluminum.Additionally,the conductivity of warm dense aluminum is computed in the regime where collisions are dominated by electron-ion scattering.The results obtained are compared with available theoretical results and simulation data. 展开更多
关键词 dynamic properties local field correction ionic nonideality plasma interaction models temperature relaxation rate transport properties plasma screening model dense quantum plasmas
在线阅读 下载PDF
Dynamic properties and shakedown behavior of red clay under intermittent cyclic loading
5
作者 LIU Mingxing LU Weihong +3 位作者 XU Yijian DENG Ye ZHONG Yuhuang LIU Enlong 《Journal of Mountain Science》 2025年第10期3835-3849,共15页
Red clay,widely used as a subgrade material in southern China,requires a reliable evaluation of its dynamic behavior to ensure infrastructure safety.Long-term cyclic triaxial tests were conducted on red clay from typi... Red clay,widely used as a subgrade material in southern China,requires a reliable evaluation of its dynamic behavior to ensure infrastructure safety.Long-term cyclic triaxial tests were conducted on red clay from typical,complex subway subgrades to investigate its dynamic properties and shakedown behavior under intermittent cyclic loading.Results show that intermittent cyclic loading,especially with multiple amplitudes,causes greater axial plastic strain and lower post-cyclic strength than continuous loading.These effects diminish with increasing confining pressure.Notably,axial strain partially recovers during loading intervals,with recovery ratios depending on the number and sequence of pauses.Based on the rules of cumulative plastic strain rates and cumulative plastic strain increments,shakedown behavior for red clay under intermittent cyclic loading is divided into three categories:plastic shakedown,critical shakedown,and plastic creep.A quantitative shakedown limit criterion is proposed using the Boltzmann function.Shakedown behavior significantly influences the post-cyclic strengths,and the influence diminishes as confining pressure increases.Samples exhibiting plastic creep and plastic shakedown behavior have the lowest and highest strengths,and those with critical shakedown behaviors have medium strengths.Cyclic loading with relatively low-stress amplitude causes a hardening effect,while cyclic loading intermittence or cyclic loading with relatively high-stress amplitude causes a degradation effect,and both effects are mitigated by higher confining pressures. 展开更多
关键词 Red clay Intermittent cyclic loading Dynamic properties Shakedown behavior Post-cyclic strength
原文传递
Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance(SDSL-EPR)spectroscopy
6
作者 Ruotong Wei Aokun Liu +3 位作者 Jian Kuang Zhiwen Wang Lu Yu Changlin Tian 《Chinese Chemical Letters》 2025年第4期314-318,共5页
Liquid-liquid phase separation(LLPS)of proteins and nucleic acids is a common phenomenon in cells that underlies the formation of membraneless organelles.Although the macroscopic behavior of biomolecular coacervates h... Liquid-liquid phase separation(LLPS)of proteins and nucleic acids is a common phenomenon in cells that underlies the formation of membraneless organelles.Although the macroscopic behavior of biomolecular coacervates has been elucidated by microscopy,the detailed dynamic properties of proteins/peptides during the LLPS process remain poorly characterized.Here,site-directed spin labeling-electron paramagnetic resonance(SDSL-EPR)spectroscopy was employed to characterize the dynamic properties of a minimal model LLPS system consisting of positively charged peptides and RNA.The degree of phase separation,indicated by broadening of the EPR spectrum of the spin-labeled peptide due to slow molecular tumbling,was monitored by EPR.In addition,three distinct populations with varying molecular motion during LLPS,featuring different spectral lineshapes,were identified.These populations included a fast motion component(Ⅰ),a slower motion component(Ⅱ)associated with peptides in the dispersed phase and an immobile component(Ⅲ)observed in the dense phase.With gradual titration of the peptides to RNA,the EPR spectrum gradually shifted,refiecting changes in the populations of the components.Together,SDSL-EPR method not only provides new insights into the dynamic behavior of biomolecules during LLPS,but also offers a sensitive method for biomolecular phase separation processes at the molecular level. 展开更多
关键词 Site-directed spin labeling(SDSL) Electron paramagnetic resonance(EPR) Phase separation Dynamic properties Molecular tumbling
原文传递
Experimental and Numerical Analyses of the Dynamic Mechanical Properties of Hull Plate-Frame Structures Under Drop Weight Impacted Load
7
作者 ZONG Shuai LIU Kun +3 位作者 LU Yue HUANG Tian-bo LIU He-wei QIU Wei-jian 《China Ocean Engineering》 2025年第1期27-42,共16页
Experimental studies were conducted on two high-strength steel plate-frame structures with different truss spacings under various impact velocities to investigate the dynamic mechanical properties of hull plate-frame ... Experimental studies were conducted on two high-strength steel plate-frame structures with different truss spacings under various impact velocities to investigate the dynamic mechanical properties of hull plate-frame structures under drop weight impact.The results showed that decreasing the main beam spacing can effectively increase the structural stiffness,reduce the maximum deformation,and increase the damage range.Furthermore,to simulate the impact tests accurately,static and dynamic tensile tests at different strain rates were carried out,and the Cowper-Symonds model parameters were fitted via experimental data.The material properties obtained from the tensile tests were used as inputs for numerical simulations with the numerical results coincide with the experimental results.A systematic analysis and discussion were conducted on the effects of truss spacing and truss width on the dynamic response of the reinforced plates,and an optimal range for the ratio of truss spacing to truss width was proposed.In addition,a mesh size sensitivity analysis for ship hull plate frame collision simulations was performed.The applicability of the EPS,MMC,and RTCL failure criteria in the simulation of plate-frame structures was investigated via finite element simulations of falling weight impact tests.The research findings provide a reference for ship hull structure design and resilience assessment. 展开更多
关键词 ship collision hull plate-frame structure dynamic mechanical property collision model test numerical simulation
在线阅读 下载PDF
Dynamic properties of mode Ⅰ and mode Ⅱ fractures of shale under impact loading
8
作者 Zelin Yan Linjuan Wang +1 位作者 Jidong Jin Jianxiang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1053-1067,共15页
Controllable shock wave fracturing is an innovative engineering technique used for shale reservoir fracturing and reformation.Understanding the anisotropic fracture mechanism of shale under impact loading is vital for... Controllable shock wave fracturing is an innovative engineering technique used for shale reservoir fracturing and reformation.Understanding the anisotropic fracture mechanism of shale under impact loading is vital for optimizing shock wave fracturing equipment and enhancing shale oil production.In this study,using the well-known notched semi-circular bend(NSCB)sample and the novel double-edge notched flattened Brazilian disc(DNFBD)sample combined with a split Hopkinson pressure bar(SHPB),various dynamic anisotropic fracture properties of Lushan shale,including failure characteristics,fracture toughness,energy dissipation and crack propagation velocity,are comprehensively compared and discussed under mode Ⅰ and mode Ⅱ fracture scenarios.First,using a newly modified fracture criterion considering the strength anisotropy of shale,the DNFBD specimen is predicted to be a robust method for true mode Ⅱ fracture of anisotropic shale rocks.Our experimental results show that the dynamic mode Ⅱ fracture of shale induces a rougher and more complex fracture morphology and performs a higher fracture toughness or fracture energy compared to dynamic mode Ⅰ fracture.The minimal fracture toughness or fracture energy occurs in the Short-transverse orientation,while the maximal ones occur in the Divider orientation.In addition,it is interesting to find that the mode Ⅱ fracture toughness anisotropy index decreases more slowly than that in the mode Ⅰ fracture scenario.These results provide significant insights for understanding the different dynamic fracture mechanisms of anisotropic shale rocks under impact loading and have some beneficial implications for the controllable shock wave fracturing technique. 展开更多
关键词 SHALE Controllable shock wave fracturing Dynamic fracture property Fracture toughness anisotropy Loading rate effect
在线阅读 下载PDF
Temperature-induced deformation of CRTS II slab track and its effect on track dynamical properties 被引量:9
9
作者 SONG XiaoLin ZHAO ChunFa ZHU XiaoJia 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第10期1917-1924,共8页
Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One mod... Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One model,which considers the fully bonding interface between the slab and the CAM layer,could applied to a track that is in good condition;the other model uses cohesive zone elements to simulate the deteriorated CAM with some possible interfacial separation and slip.Utilizing both of the models,temperature-induced warp deformations of track under various temperature loads are investigated.The influence of temperature deformation on the dynamic properties of the track is analyzed based on the train-track coupled dynamics.Numerical results show that the deteriorated CAM layer can significantly increase temperature deformations of a CRTS II track slab,which would produce tiny rail irregularities.There are clear differences between the deformation shapes of the track slabs that have an inseparable mortar layer and those have a separable mortar layer.The track slab with a deteriorated mortar layer showed more open curl distortion than the track slab in good condition.The dynamical response index of the slab track is intensified to a certain level due to the temperature deformation;with an increase of the train speed,the track dynamical responses increased linearly.However,rail irregularities due to the temperature deformations are very tiny.Even if a track is exposed to extreme temperature loads and the mortar layer is deteriorated,temperature deformation can have a negligible effect on the track’s dynamical properties. 展开更多
关键词 high-speed railway temperature deformation slab track dynamical properties
原文传递
Dynamical properties of nanotubes with nonlocal continuum theory: A review 被引量:2
10
作者 WANG YiZe LI FengMing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第7期1210-1224,共15页
As the typical systems of nano structures, nanotubes can be widely applied in mechanical electronics, mechanical manufacture and other fields at nano scales. The superior dynamical properties of nanotubes have become ... As the typical systems of nano structures, nanotubes can be widely applied in mechanical electronics, mechanical manufacture and other fields at nano scales. The superior dynamical properties of nanotubes have become a hot topic. Furthermore, there are always complicated conditions for practical engineering (e.g. initial stress/strain, temperature change for external environment and the interaction between the structure and elastic matrix). Then, it is important to establish the proper model and apply the effective analysis method. By using the nonlocal continuum method, this paper reviews the recent progress of dynamical properties of micro structures at nano scales. The discussion is focused on dynamical behaviors of nanotubes, including vibration, wave propagation and fluid-structure interaction, etc. At last, conclusions and prospects in future studies are discussed. 展开更多
关键词 nonlocal continuum theory dynamical properties nano scales MICROSTRUCTURES
原文传递
Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces 被引量:2
11
作者 Guang Feng Wei Zhao +1 位作者 Peter T.Cummings Song Li 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第5期594-600,共7页
Room temperature ionic liquids(RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. To explore the molecular mechanism, RTILs/carbon pieces mixture was investigated by molecular dynamics(... Room temperature ionic liquids(RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. To explore the molecular mechanism, RTILs/carbon pieces mixture was investigated by molecular dynamics(MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide([Bmim][DCA]). This study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presence of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. This work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties. 展开更多
关键词 room temperature ionic liquids carbon pieces FLEXIBILITY dynamical property ion pair stability interfacial structure
原文传递
The Structural,Dielectric,Lattice Dynamical and Thermodynamic Properties of Zinc-Blende CdX(X=S,Se,Te) from First-Principles Analysis
12
作者 冯世全 李俊玉 程新路 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第3期92-96,共5页
The structural, dielectric, lattice dynamical and thermodynamic properties of zinc-blende CdX (X=S, Se, Te) are studied by using a plane-wave pseudopotential method within the density-functional theory. Our calculat... The structural, dielectric, lattice dynamical and thermodynamic properties of zinc-blende CdX (X=S, Se, Te) are studied by using a plane-wave pseudopotential method within the density-functional theory. Our calculated lattice constants and bulk modulus are compared with the pubfished experimental and theoretical data. In addition, the Born effective charges, electronic dielectric tensors, phonon frequencies, and longitudinal opticaltransverse optical splitting are calculated by the linear-response approach. Some of the characteristics of the phonon-dispersion curves for zinc-blende CdX (X= S, Se, Te) are summarized. What is more, based on the lattice dynamical properties, we investigate the thermodynamic properties of CdX (X= S, Se, Te) and analyze the temperature dependences of the Helmholtz free energy F, the internal energy E, the entropy S and the constant-volume specific heat Cv. The results show that the heat capacities for CdTe, CdSe, and CdS approach approximately to the Petit-Dulong limit 6R. 展开更多
关键词 X=S Se Te The Structural Dielectric Lattice dynamical and Thermodynamic properties of Zinc-Blende CdX X from First-Principles Analysis
原文传递
Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum
13
作者 Longfei Guo Bing Zha +4 位作者 Xiaoqiao Sun Songmei Ni Ruiyu Huang Lin Chen Zhikuo Tao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期388-395,共8页
We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding cent... We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices. 展开更多
关键词 SKYRMION spin angular momentum orbital angular momentum dynamic properties
原文传递
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:30
14
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 ROCK freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
在线阅读 下载PDF
Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy 被引量:11
15
作者 刘文辉 何圳涛 +1 位作者 陈宇强 唐思文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2179-2186,共8页
To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensil... To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance. 展开更多
关键词 2519A aluminum alloy dynamic mechanical properties Johnson-Cook model MICROSTRUCTURE
在线阅读 下载PDF
Dynamical analysis and circuit simulation of a new three-dimensional chaotic system 被引量:1
16
作者 王爱元 凌志浩 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期96-101,共6页
This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in ... This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in the third equation. Basic dynamic properties of the new system are investigated by means of theoretical analysis, numerical simulation, sensitivity to initial, power spectrum, Lyapunov exponent, and Poincar~ diagrams. The dynamic properties affected by variable parameters are also analysed. Finally, the chaotic system is simulated by circuit. The results verify the existence and implementation of the system. 展开更多
关键词 chaotic system dynamical properties circuit simulation nonlinear analysis
原文传递
Dynamic behavior of a battery pack based on single reference impact testing of a secondary cell
17
作者 Zhen Xiao Wen-rong Fan Wei-song Hu 《中国科学技术大学学报》 北大核心 2025年第2期44-50,43,I0002,共9页
The mechanical properties of secondary cells are crucial to the safety and reliability of battery packs,which can fail due to extrusion and vibration in a vehicle crash.To analyze the structural response of the second... The mechanical properties of secondary cells are crucial to the safety and reliability of battery packs,which can fail due to extrusion and vibration in a vehicle crash.To analyze the structural response of the secondary cell and its other dynamic behaviors,the experiment and some numerical simulations were carried out based on single reference impact testing.Then,an equivalent constitutive relationship of the secondary cell was proposed to reveal the dynamic properties and used to guide the safety estimation of the battery pack.As the input parameter to the finite element model,the equivalent constitutive relationship,including but not limited to the elastic modulus and stain-stress curve,determines the simulation precision of the battery packs.Compared to the experimental results of the natural frequency of the battery pack,the simulation error is below 2%when the elastic modulus of the secondary cell in the battery pack has been verified. 展开更多
关键词 equivalent constitutive relationship secondary cell dynamic property
在线阅读 下载PDF
An innovative nonlinear bionic X-shaped vibration isolator enhanced by quasi-zero stiffness characteristics:theory and experimental investigation
18
作者 Zeyu CHAI Zhen ZHANG +3 位作者 Kefan XU Xuyuan SONG Yewei ZHANG Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1475-1492,共18页
Bionic X-shaped vibration isolators have been widely employed in aerospace and other industrial fields,but the stiffness properties of classic X-shaped structures limit the vibration isolation ability for low frequenc... Bionic X-shaped vibration isolators have been widely employed in aerospace and other industrial fields,but the stiffness properties of classic X-shaped structures limit the vibration isolation ability for low frequencies.An innovative bionic quasi-zero stiffness(QZS)vibration isolator(BQZSVI),which can broaden the QZS range of a classic X-shaped isolator and can bring it closer to the equilibrium position,is proposed.The BQZSVI consists of an X-shaped structure as the bone fabric of lower limbs and a nonlinear magnetic loop device simulating the leg muscle.Based on static calculation,the stiffness characteristic of the structure is confirmed.The governing equations of motion of the BQZSVI structure are established in the framework of the Lagrange equation,and the harmonic balance method(HBM)is adopted to obtain the transmissibility responses.The results show that the BQZSVI can provide a more accessible and broader range of QZS.In the dynamic manifestation,the introduction of the BQZSVI can reduce the amplitude of a classic X-shaped vibration isolator by 65.7%,and bring down the initial vibration isolation frequency from 7.43 Hz to 2.39 Hz.In addition,a BQZSVI prototype is designed and fabricated,and the exactitude of the theoretical analysis method is proven by means of experiments. 展开更多
关键词 bionic quasi-zero stiffness(QZS) X-shaped structure magnetic loop device vibration isolation dynamic property
在线阅读 下载PDF
A Method for Satellite Panel Stiffness Modification
19
作者 JI Jingquan ZHU Jiantao 《Aerospace China》 2025年第1期48-52,共5页
This paper first analyzes the vibration environment at the spacecraft/launch vehicle(SC/LV)interface during the powered flight phase.Second,it proposes a method to enhance satellite panel stiffness.Satellite frequency... This paper first analyzes the vibration environment at the spacecraft/launch vehicle(SC/LV)interface during the powered flight phase.Second,it proposes a method to enhance satellite panel stiffness.Satellite frequency response analysis examines stiffness compatibility between the satellite(including its components)and the integrated launch stack.The environmental effect equivalence method then determines satellite ground verification test condi-tions.Ground test responses are compared with SC/LV coupling analysis results to ensure that ground tests envelope the coupling analysis results,confirming the adequacy of ground verification. 展开更多
关键词 pannel stiffness vibration environment satellite dynamic properties
在线阅读 下载PDF
A local-global dynamic hypergraph convolution with multi-head flow attention for traffic flow forecasting
20
作者 ZHANG Hong LI Yang +3 位作者 LUO Shengjun ZHANG Pengcheng ZHANG Xijun YI Min 《High Technology Letters》 2025年第3期246-256,共11页
Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To... Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance. 展开更多
关键词 traffic flow prediction multi-head flow attention graph convolution hypergraph learning dynamic spatio-temporal properties
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部