The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present ...The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present research on WTA is focused on models and algorithms. In the research on models of WTA, the static WTA models are mainly studied and the dynamic WTA models are not fully studied in deed. In the research on algorithms of WTA, the intelligent algorithms are often used to solve the WTA problem. The small scale of static WTA problems has been solved very well, however, the large scale of dynamic WTA problems has not been solved effectively so far. Finally, the characteristics of dynamic WTA are analyzed and directions for the future research on dynamic WTA are discussed.展开更多
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base...Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment.展开更多
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d...The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.展开更多
The dynamic weapon-target assignment (DWTA) problem is an important issue in the field of military command and control. An asset-based DWTA optimization model was proposed with four kinds of constraints considered, ...The dynamic weapon-target assignment (DWTA) problem is an important issue in the field of military command and control. An asset-based DWTA optimization model was proposed with four kinds of constraints considered, including capability constraints, strategy constraints, resource constraints and engagement feasibility constraints. A general "virtual" representation of decisions was presented to facilitate the generation of feasible decisions. The representation is in essence the permutation of all assignment pairs. A construction procedure converts the permutations into real feasible decisions. In order to solve this problem, three evolutionary decision-making algorithms, including a genetic algorithm and two memetic algorithms, were developed. Experimental results show that the memetic algorithm based on greedy local search can generate obviously better DWTA decisions, especially for large-scale problems, than the genetic algorithm and the memetic algorithm based on steepest local search.展开更多
As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA...As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.展开更多
Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop ...Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.展开更多
The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategi...The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by rea- sonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimiza- tion problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA) framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is pro- posed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC) algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II) is intro- duced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi- objective genetic algorithm (MOGA), multi-objective evolutionary algorithm based on decom- position (MOEA/D), CC-based multi-objective algorithm (CCMA) as well as other two MPEAs with different migration interval strategies.展开更多
This paper investigates the dynamical behaviour of network traffic flow. Assume that trip rates may be influenced by the level of service on the network and travellers are willing to take a faster route. A discrete dy...This paper investigates the dynamical behaviour of network traffic flow. Assume that trip rates may be influenced by the level of service on the network and travellers are willing to take a faster route. A discrete dynamical model for the day-to-day adjustment process of route choice is presented. The model is then applied to a simple network for analysing the day-to-day behaviours of network flow. It finds that equilibrium is arrived if network flow consists of travellers not very sensitive to the differences of travel cost. Oscillations and chaos of network traffic flow are also found when travellers are sensitive to the travel cost and travel demand in a simple network.展开更多
Traffic congestion is widely distributed around a network. Generally, to analyze traffic congestion, static traffic capacity is adopted. But dynamic characteristics must be studied because congestion is a dynamic proc...Traffic congestion is widely distributed around a network. Generally, to analyze traffic congestion, static traffic capacity is adopted. But dynamic characteristics must be studied because congestion is a dynamic process. A Dynamic Traffic Assignment modeling fundamental combined with an urban congestion analysis method is studied in this paper. Three methods are based on congestion analysis, and the stochastic user optimal DTA models are especially considered. Correspondingly, a dynamic system optimal model is suggested for responding congestion countermeasures and an ideal user optimal model for predicted congestion countermeasure respectively.展开更多
Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily...Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily used for the design of a linear system with unknown inputs under some conditions. Even when these conditions are not satisfied, the lower order dynamical compensator can also be designed under some relaxed conditions. Some examples illustrate that the method is neat, simple and effective.展开更多
A “Random Shortest Path”traffic assignment model and its algorithm arepresented by simulating the trip-makers’route-choice characters,and the dynamic meth-od is introduced in the assignment model.It is a ideal mult...A “Random Shortest Path”traffic assignment model and its algorithm arepresented by simulating the trip-makers’route-choice characters,and the dynamic meth-od is introduced in the assignment model.It is a ideal multiple path assignment modelwhich can be carried out by the dynamic method and static method,can better reflect boththe shortest path factor and the random factor in the route-choice,and is of reasonableassignment volumes.Besides,both dynamic and static softwares particularly suited to thetraffic assignment of large and medium-sized transportation networks arc developed.展开更多
The identification and selection of performance measures play an important role in any decision making process. Additionally, millions of dollars are spent on appropriate planning and identification of prospective pro...The identification and selection of performance measures play an important role in any decision making process. Additionally, millions of dollars are spent on appropriate planning and identification of prospective projects for improvements. As a result, current practitioners spend a lot of time and money in prioritizing their limited resources. This research proposes two tasks: 1) estimation of performance measures using a simulation based on dynamic traffic assignment model, and 2) development of a methodology to evaluate multiple projects based on benefit-cost analysis. The model, DynusT, is used for the Las Vegas roadway network during the morning peak time period. A comparative analysis of the results from proposed methodology with existing California Benefit-Cost (Cal-B/C) models is presented. The results indicate that the new methodology provides an accurate benefit-cost ratio of the projects. In addition, it signifies that the existing Cal-B/C models underestimate the benefits associated with the prospective project improvements. The major contribution of this research is the simultaneous estimation of the performance measures and development of a methodology to evaluate multiple projects. This is helpful to decision makers to rank and prioritize future projects in a cost-effective manner. Planning and operational policies for the transportation systems can be developed based on the gained insights from this study.展开更多
In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is...In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.展开更多
A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result...A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.展开更多
Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinfo...Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinforcement learning theory,an improved Deep Deterministic Policy Gradient algorithm with dual noise and prioritized experience replay is proposed,which uses a double noise mechanism to expand the search range of the action,and introduces a priority experience playback mechanism to effectively achieve data utilization.Finally,the algorithm is simulated and validated on the ground-to-air countermeasures digital battlefield.The results of the experiment show that,under the framework of the deep neural network for intelligent weapon-target assignment proposed in this paper,compared to the traditional RELU algorithm,the agent trained with reinforcement learning algorithms,such asDeepDeterministic Policy Gradient algorithm,Asynchronous Advantage Actor-Critic algorithm,Deep Q Network algorithm performs better.It shows that the use of deep reinforcement learning algorithms to solve the weapon-target assignment problem in the field of air defense operations is scientific.In contrast to other reinforcement learning algorithms,the agent trained by the improved Deep Deterministic Policy Gradient algorithm has a higher win rate and reward in confrontation,and the use of weapon resources is more efficient.It shows that the model and algorithm have certain superiority and rationality.The results of this paper provide new ideas for solving the problemof weapon-target assignment in air defense combat command decisions.展开更多
The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations ...The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.展开更多
WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operati...WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.展开更多
Recent demand for wireless communication continues to grow rapidly as a result of the increasing number of users, the emergence of new user requirements, and the trend to new access technologies. At the same time, the...Recent demand for wireless communication continues to grow rapidly as a result of the increasing number of users, the emergence of new user requirements, and the trend to new access technologies. At the same time, the electromagnetic spectrum or frequencies allocated for this purpose are still limited. This makes solving the frequency assignment problem more and more critical. In this paper, a new approach is proposed using self-organizing multi-agent systems to solve distributed dynamic channel-assignment;it concerns distribution among agents which task is to assign personal station to frequencies with respect to well known constraints. Agents only know their variables and the constraints affecting them, and have to negotiate to find a collective solution. The approach is based on a macro-level management taking the form of a hierarchical group of distributed agents in the network and handling all RANs (Regional Radio Access Network) in a localized region regardless of the operating band. The approach defines cooperative self-organization as the process leading the collective to the solution: agents can change the organization by their own decision to improve the state of the system. Our approach has been tested on PHEADEPHIA benchmarks of frequency assignment Problem. The results obtained are equivalent to those of current existing methods with the benefits that our approach shows more efficiency in terms of flexibility and autonomy.展开更多
Dynamic channel assignment(DCA)is significant for extending vehicular ad hoc network(VANET)capacity and mitigating congestion.However,the un-known global state information and the lack of centralized control make chan...Dynamic channel assignment(DCA)is significant for extending vehicular ad hoc network(VANET)capacity and mitigating congestion.However,the un-known global state information and the lack of centralized control make channel assignment performances a challenging task in a distributed vehicular direct communication scenario.In our preliminary field test for communication under V2X scenario,we find that the existing DCA technology cannot fully meet the communication performance requirements of VANET.In order to improve the communication performance,we firstly demonstrate the feasibility and potential of reinforcement learning(RL)method in joint channel selection decision and access fallback adaptation design in this paper.Besides,a dual reinforcement learning(DRL)-based cooperative DCA(DRL-CDCA)mechanism is proposed.Specifically,DRL-CDCA jointly optimizes the decision-making behaviors of both the channel selection and back-off adaptation based on a multi-agent dual reinforcement learning framework.Besides,nodes locally share and incorporate their individual rewards after each communication to achieve regional consistency optimization.Simulation results show that the proposed DRL-CDCA can better reduce the one-hop packet delay,improve the packet delivery ratio on average when compared with two other existing mechanisms.展开更多
基金This project was supported by the National Defense Pre-Research Foundation of China
文摘The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present research on WTA is focused on models and algorithms. In the research on models of WTA, the static WTA models are mainly studied and the dynamic WTA models are not fully studied in deed. In the research on algorithms of WTA, the intelligent algorithms are often used to solve the WTA problem. The small scale of static WTA problems has been solved very well, however, the large scale of dynamic WTA problems has not been solved effectively so far. Finally, the characteristics of dynamic WTA are analyzed and directions for the future research on dynamic WTA are discussed.
文摘Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment.
基金supported by the National Natural Science Foundation of China(61673209,71971115)。
文摘The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.
基金Supported by the National Natural Science Foundation of China (Grant No. 60374069)the Foundation of the Key Laboratory of Complex Systems and Intelligent Science, Institute of Automation, Chinese Academy of Sciences (Grant No. 20060104)
文摘The dynamic weapon-target assignment (DWTA) problem is an important issue in the field of military command and control. An asset-based DWTA optimization model was proposed with four kinds of constraints considered, including capability constraints, strategy constraints, resource constraints and engagement feasibility constraints. A general "virtual" representation of decisions was presented to facilitate the generation of feasible decisions. The representation is in essence the permutation of all assignment pairs. A construction procedure converts the permutations into real feasible decisions. In order to solve this problem, three evolutionary decision-making algorithms, including a genetic algorithm and two memetic algorithms, were developed. Experimental results show that the memetic algorithm based on greedy local search can generate obviously better DWTA decisions, especially for large-scale problems, than the genetic algorithm and the memetic algorithm based on steepest local search.
基金supported by the National Natural Science Foundation of China (No. 62073267)。
文摘As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.
文摘Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.
基金co-supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 60921001)
文摘The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by rea- sonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimiza- tion problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA) framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is pro- posed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC) algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II) is intro- duced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi- objective genetic algorithm (MOGA), multi-objective evolutionary algorithm based on decom- position (MOEA/D), CC-based multi-objective algorithm (CCMA) as well as other two MPEAs with different migration interval strategies.
文摘This paper investigates the dynamical behaviour of network traffic flow. Assume that trip rates may be influenced by the level of service on the network and travellers are willing to take a faster route. A discrete dynamical model for the day-to-day adjustment process of route choice is presented. The model is then applied to a simple network for analysing the day-to-day behaviours of network flow. It finds that equilibrium is arrived if network flow consists of travellers not very sensitive to the differences of travel cost. Oscillations and chaos of network traffic flow are also found when travellers are sensitive to the travel cost and travel demand in a simple network.
文摘Traffic congestion is widely distributed around a network. Generally, to analyze traffic congestion, static traffic capacity is adopted. But dynamic characteristics must be studied because congestion is a dynamic process. A Dynamic Traffic Assignment modeling fundamental combined with an urban congestion analysis method is studied in this paper. Three methods are based on congestion analysis, and the stochastic user optimal DTA models are especially considered. Correspondingly, a dynamic system optimal model is suggested for responding congestion countermeasures and an ideal user optimal model for predicted congestion countermeasure respectively.
文摘Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily used for the design of a linear system with unknown inputs under some conditions. Even when these conditions are not satisfied, the lower order dynamical compensator can also be designed under some relaxed conditions. Some examples illustrate that the method is neat, simple and effective.
基金The Project Supported by National Natural Science Foundation of China
文摘A “Random Shortest Path”traffic assignment model and its algorithm arepresented by simulating the trip-makers’route-choice characters,and the dynamic meth-od is introduced in the assignment model.It is a ideal multiple path assignment modelwhich can be carried out by the dynamic method and static method,can better reflect boththe shortest path factor and the random factor in the route-choice,and is of reasonableassignment volumes.Besides,both dynamic and static softwares particularly suited to thetraffic assignment of large and medium-sized transportation networks arc developed.
文摘The identification and selection of performance measures play an important role in any decision making process. Additionally, millions of dollars are spent on appropriate planning and identification of prospective projects for improvements. As a result, current practitioners spend a lot of time and money in prioritizing their limited resources. This research proposes two tasks: 1) estimation of performance measures using a simulation based on dynamic traffic assignment model, and 2) development of a methodology to evaluate multiple projects based on benefit-cost analysis. The model, DynusT, is used for the Las Vegas roadway network during the morning peak time period. A comparative analysis of the results from proposed methodology with existing California Benefit-Cost (Cal-B/C) models is presented. The results indicate that the new methodology provides an accurate benefit-cost ratio of the projects. In addition, it signifies that the existing Cal-B/C models underestimate the benefits associated with the prospective project improvements. The major contribution of this research is the simultaneous estimation of the performance measures and development of a methodology to evaluate multiple projects. This is helpful to decision makers to rank and prioritize future projects in a cost-effective manner. Planning and operational policies for the transportation systems can be developed based on the gained insights from this study.
基金Supported by the National Natural Science Foundation of China(No.61675033,61575026,61675232,61571440)the National High Technology Research and Development Program of China(No.2015AA015504)
文摘In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.
基金supported by the National Natural Science Foundation of China(Grant No.72201088,71871077,71925001)the Fundamental Research Funds for the Central Universities of China(Grant No.PA2022GDSK0040,JZ2023YQTD0073),which are gratefully acknowledged.
文摘A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.
基金funded by the Project of the National Natural Science Foundation of China,Grant Number 62106283.
文摘Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinforcement learning theory,an improved Deep Deterministic Policy Gradient algorithm with dual noise and prioritized experience replay is proposed,which uses a double noise mechanism to expand the search range of the action,and introduces a priority experience playback mechanism to effectively achieve data utilization.Finally,the algorithm is simulated and validated on the ground-to-air countermeasures digital battlefield.The results of the experiment show that,under the framework of the deep neural network for intelligent weapon-target assignment proposed in this paper,compared to the traditional RELU algorithm,the agent trained with reinforcement learning algorithms,such asDeepDeterministic Policy Gradient algorithm,Asynchronous Advantage Actor-Critic algorithm,Deep Q Network algorithm performs better.It shows that the use of deep reinforcement learning algorithms to solve the weapon-target assignment problem in the field of air defense operations is scientific.In contrast to other reinforcement learning algorithms,the agent trained by the improved Deep Deterministic Policy Gradient algorithm has a higher win rate and reward in confrontation,and the use of weapon resources is more efficient.It shows that the model and algorithm have certain superiority and rationality.The results of this paper provide new ideas for solving the problemof weapon-target assignment in air defense combat command decisions.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604200)the National Natural Science Foundation of China(Grant No.12261131495)Institute of Systems Science,Beijing Wuzi University(Grant No.BWUISS21).
文摘The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.
文摘WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.
文摘Recent demand for wireless communication continues to grow rapidly as a result of the increasing number of users, the emergence of new user requirements, and the trend to new access technologies. At the same time, the electromagnetic spectrum or frequencies allocated for this purpose are still limited. This makes solving the frequency assignment problem more and more critical. In this paper, a new approach is proposed using self-organizing multi-agent systems to solve distributed dynamic channel-assignment;it concerns distribution among agents which task is to assign personal station to frequencies with respect to well known constraints. Agents only know their variables and the constraints affecting them, and have to negotiate to find a collective solution. The approach is based on a macro-level management taking the form of a hierarchical group of distributed agents in the network and handling all RANs (Regional Radio Access Network) in a localized region regardless of the operating band. The approach defines cooperative self-organization as the process leading the collective to the solution: agents can change the organization by their own decision to improve the state of the system. Our approach has been tested on PHEADEPHIA benchmarks of frequency assignment Problem. The results obtained are equivalent to those of current existing methods with the benefits that our approach shows more efficiency in terms of flexibility and autonomy.
基金Beijing Municipal Natural Science Foundation Nos.L191001 and 4181002the National Natural Science Foundation of China under Grant Nos.61672082 and 61822101the Newton Advanced Fellow-ship under Grant No.62061130221.
文摘Dynamic channel assignment(DCA)is significant for extending vehicular ad hoc network(VANET)capacity and mitigating congestion.However,the un-known global state information and the lack of centralized control make channel assignment performances a challenging task in a distributed vehicular direct communication scenario.In our preliminary field test for communication under V2X scenario,we find that the existing DCA technology cannot fully meet the communication performance requirements of VANET.In order to improve the communication performance,we firstly demonstrate the feasibility and potential of reinforcement learning(RL)method in joint channel selection decision and access fallback adaptation design in this paper.Besides,a dual reinforcement learning(DRL)-based cooperative DCA(DRL-CDCA)mechanism is proposed.Specifically,DRL-CDCA jointly optimizes the decision-making behaviors of both the channel selection and back-off adaptation based on a multi-agent dual reinforcement learning framework.Besides,nodes locally share and incorporate their individual rewards after each communication to achieve regional consistency optimization.Simulation results show that the proposed DRL-CDCA can better reduce the one-hop packet delay,improve the packet delivery ratio on average when compared with two other existing mechanisms.