期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing 被引量:1
1
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 Additive manufacturing High dynamic MEMS components Multiscale control Process optimization High dynamic verification
在线阅读 下载PDF
Static Analysis-Based Behavior Model Building for Trusted Computing Dynamic Verification
2
作者 YU Fajiang YU Yue 《Wuhan University Journal of Natural Sciences》 CAS 2010年第3期195-200,共6页
Current trusted computing platform only verifies application's static Hash value, it could not prevent application from being dynamic attacked. This paper gives one static analysis-based behavior model building metho... Current trusted computing platform only verifies application's static Hash value, it could not prevent application from being dynamic attacked. This paper gives one static analysis-based behavior model building method for trusted computing dynamic verification, including control flow graph (CFG) building, finite state automata (FSA) constructing, e run cycle removing, e transition removing, deterministic finite state (DFA) constructing, trivial FSA removing, and global push down automata (PDA) constructing. According to experiment, this model built is a reduced model for dynamic verification and covers all possible paths, because it is based on binary file static analysis. 展开更多
关键词 trusted computing dynamic verification behavior model finite-state automata (FSA) push down automata (PDA)
原文传递
Valve Train Dynamic Design and Verification
3
作者 CAO Xu YIN Jiandong +1 位作者 LIU Shengqiang YAO Junwei 《International Journal of Plant Engineering and Management》 2022年第4期232-243,共12页
Valve train dynamic behaviors need to be considered at the beginning of the engine mechanical design,especially during choosing valve spring parameters.From parameter definition to simulation,the valve train parameter... Valve train dynamic behaviors need to be considered at the beginning of the engine mechanical design,especially during choosing valve spring parameters.From parameter definition to simulation,the valve train parameters around dynamic performance are determined step by step.The valve train dynamic test is done finally to verify the design result since it is a such important facet for valve train design.And reliability from mass production and product life view must be considered during whole design process too. 展开更多
关键词 valve train dynamic simulation dynamic verification
在线阅读 下载PDF
Design and performance analysis of indoor calibration device for the forcemeasuring system of the tractor three-point hitch
4
作者 Dong Dai Du Chen +4 位作者 Xu Mao Yawei Zhang Yutong Li Shumao Wang Bin Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期47-54,共8页
The real-time monitoring of the load in farming by the sensor installed on the tractor's three-point hitch can effectively improve the farming efficiency and force-position combined control,reduce the compaction r... The real-time monitoring of the load in farming by the sensor installed on the tractor's three-point hitch can effectively improve the farming efficiency and force-position combined control,reduce the compaction risk of the wheel on the soil and reduce the fuel consumption in farming process.However,the measurement and quantification of the loads on the three-point hitch have some problems remaining unresolved:testing the accuracy and reliability of a load measuring system is hard when the tractor works in a field,the mathematical model of spatial forces usually lacks a practical and effective validation,and the calibration process of the measurement system is inconvenient and incomplete while easily causing a low accuracy.Specifically,this paper builds a new spatial-force mathematical model based on the geometry of a three-point hitch.To eliminate the discrepancy of the geometric model with the actual structure and to refine the mathematical model,a calibration process is conducted by developing a calibration bench,which is equipped with a data acquisition system and a multi-parameter monitoring interface.The three-point hitch installed on this calibration bench is subject to steady-state loading.The loading force,angle of the lower drawbar,and three-component forces(three shaft pin sensors’forces)of the three-point hitch are well measured.With applying for the measured data to calibrate the theoretical mathematic model eventually derives the resultant force from all the three-component forces,a dynamical loading bench was developed to test the calculated resultant force for the three-point hitch during the sinusoidal and randomly variant dynamical loadings tests.A hitch force measurement system is also developed to collect real-time data and calculate the resultant force of measured three-component forces through the calibrated mathematical model.The results of the dynamical loading tests show that the average relative error MRE=1.09%with an average force measurement time delay beingΔt=0.5 s,the root mean square error RMSE=59.3 N,and the coefficient of determination R2=0.9903.As observed,the shape and the trend of the generated resultant force curve are basically the dynamical loading force.The dynamical loading test proves the high efficacy and reliability of the proposed indoor calibration method for calculating the load based on the three-component forces as measured on the three-point hitch.Besides,the preliminary study of the proposed method on the hitch load provides great potential to improve the indoor six-component measurement and quantification of both the force and momentum acting on the three-point hitch. 展开更多
关键词 TRACTOR three-point hitch hitch force calibration bench hitch force measurement system dynamic loading verification method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部