期刊文献+
共找到15,608篇文章
< 1 2 250 >
每页显示 20 50 100
Emerging structures and dynamic mechanisms ofγ-secretase for Alzheimer’s disease
1
作者 Yinglong Miao Michael S.Wolfe 《Neural Regeneration Research》 SCIE CAS 2025年第1期174-180,共7页
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ... γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general. 展开更多
关键词 Alzheimer’s disease amyloid precursor protein cryo-EM structures drug design intramembrane proteolysis molecular dynamics NOTCH
暂未订购
Advances in solid-state NMR methods for studying RNA structures and dynamics
2
作者 Jinhan He Xiaole Liu Shenlin Wang 《Magnetic Resonance Letters》 2025年第1期64-74,共11页
Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using convent... Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using conventional biophysical techniques,such as Xray crystallography and solution nuclear magnetic resonance(NMR),presents challenges due to the inherent flexibility and susceptibility to degradation of RNA.In recent years,solid-state NMR(SSNMR)has rapidly emerged as a promising alternative technique for characterizing RNA structure and dynamics.SSNMR has several distinct advantages,including flexibility in sample states,the ability to capture dynamic features of RNA in solid form,and suitability to character RNAs in various sizes.Recent decade witnessed the growth of ^(1)H-detected SSNMR methods on RNA,which targeted elucidating RNA topology and base pair dynamics in solid state.They have been applied to determine the topology of RNA segment in human immunodeficiency virus(HIV)genome and the base pair dynamics of riboswitch RNA.These advancements have expanded the utility of SSNMR techniques within the RNA research field.This review provides a comprehensive discussion of recent progress in ^(1)H-detected SSNMR investigations into RNA structure and dynamics.We focus on the established ^(1)H-detected SSNMR methods,sample preparation protocols,and the implementation of rapid data acquisition approaches. 展开更多
关键词 Solid-state NMR RNA structure dynamicS Pulse sequences
在线阅读 下载PDF
HTEC foot:A novel foot structure for humanoid robots combining static stability and dynamic adaptability
3
作者 Jintao Zhang Xuechao Chen +6 位作者 Zhangguo Yu Lianqiang Han Zhifa Gao Qingrui Zhao Gao Huang Ke Li Qiang Huang 《Defence Technology(防务技术)》 2025年第2期30-51,共22页
Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet s... Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved. 展开更多
关键词 Humanoid robot Bionic structure Passive foot structure Rigid-elastic hybrid dynamics model Optimal stiffness matching
在线阅读 下载PDF
Dynamic Characteristics of Different Pantograph Structures for Heavy-Duty Trucks Considering Road Excitation
4
作者 Yan Xu Dietmar Gohlich +4 位作者 Sangyoung Park William Zhendong Liu Ziwei Zhou Haiyang Qu Weidong Zhu 《Computer Modeling in Engineering & Sciences》 2025年第8期1655-1676,共22页
The emissions from traditional fossil heavy-duty trucks have become a conspicuous issue worldwide.The electrical road system(ERS)can offer a viable solution for achieving zero CO_(2) emissions and has high energy effi... The emissions from traditional fossil heavy-duty trucks have become a conspicuous issue worldwide.The electrical road system(ERS)can offer a viable solution for achieving zero CO_(2) emissions and has high energy efficiency in long-distance road cargo transport.While many kinds of pantograph structures have been developed for the ERS,their corresponding pantograph-catenary dynamic characteristics under different road conditions have not been investigated.This work performs a numerical study on the dynamics of the pantograph-catenary interaction of an ERS considering different pantograph structures.First,a pantograph-catenary-truck-road model is proposed.The reduced catenary model and reduced-plate model transmission method are used to minimize model scale.Three different types of ERS pantograph structures are considered in the model.After validation,the pantograph-catenary dynamics under the influence of truck-road interactions with complex road roughness and different pantographs are studied and compared.The corresponding vibration transmission mechanism is further focused.The results show that the truck-road interaction has a significant effect on the pantograph-catenary interaction,but the pantograph with only one lower and upper armcan isolate the roll vibrationmotion transmission fromthe truck to the collector head,which has the best dynamic performance and is suggested for use in the ERS. 展开更多
关键词 Heavy-duty truck pantograph-catenary system pantograph structure dynamic performance road roughness
在线阅读 下载PDF
Impact dynamics of debris flow with entrained material on frame structure
5
作者 LI Bailong WANG Huayan +1 位作者 LI Yanying LI Xiangling 《Journal of Mountain Science》 2025年第12期4523-4539,共17页
To evaluate the dynamic interactions between debris flows,entrained material sources,and infrastructure in the Naojiao Gully watershed of Beijing,and to develop a predictive framework for mitigating geohazard risks th... To evaluate the dynamic interactions between debris flows,entrained material sources,and infrastructure in the Naojiao Gully watershed of Beijing,and to develop a predictive framework for mitigating geohazard risks through energy-based strategies,debris flow dynamics are investigated,a coupled SPH-DEM-FEM multiscale model integrating fluid dynamics(SPH),granular mechanics(DEM),and structural mechanics(FEM)is developed to simulate debris flow propagation,material source behavior,and frame structure responses,and to capture cross-scale failure mechanisms.Key findings include the identification of a critical flow velocity threshold of 12 m/s,beyond which solid-phase kinetic energy dominates,inducing 60%-75%capacity loss in central columns via through-cracking.Furthermore,a novel compound failure criterion is proposed based on the solid-liquid energy proportion.The model achieves a boulder impact force prediction error of only 5.47%,significantly outperforming empirical methods in cross-scale accuracy.An optimized 0.3 m layered configuration experimentally reduces impact pulse peaks by 57%through directed energy redistribution,thereby shifting mitigation strategies from structural reinforcement to media modulation.These results establish a robust framework for quantifying failure thresholds,enhancing predictive precision,and innovating energy-based mitigation.By bridging multiscale modeling gaps in geohazard analysis,this study provides actionable insights for infrastructure resilience in debris flow-prone regions through energycentric design principles. 展开更多
关键词 SPH-DEM-FEM coupling Source material dynamic response Frame structure
原文传递
Effect of Al_(2)O_(3)/SiO_(2) Ratio on the Structure and Tensile Strength of Glass Fiber by Experiment and Molecular Dynamics Simulation
6
作者 KANG Junfeng XU Zhaozhi +6 位作者 YANG Shengyun KANG Zeyu GAO Wenkai CAO Yi TANG Zhiyao LI Yongyan YUE Yunlong 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1251-1261,共11页
The effects of different Al_(2)O_(3)/SiO_(2)(Al/Si)ratios on the structure and tensile strength of Na_(2)O-CaO-MgO-Al_(2)O_(3)-SiO_(2)glass fiber were investigated by Raman,tensile strength tests and molecular dynamic... The effects of different Al_(2)O_(3)/SiO_(2)(Al/Si)ratios on the structure and tensile strength of Na_(2)O-CaO-MgO-Al_(2)O_(3)-SiO_(2)glass fiber were investigated by Raman,tensile strength tests and molecular dynamics simulation.The results showed that Al^(3+)mainly existed in the form of[AlO_(4)]within the glass network.With the increase of Al/Si ratio,the Si-O-Al linkage gradually became the main connection mode of glass network.The increase of bridging oxygen content and variation of Q^(n) indicated that a higher degree of network polymerization was formed.The tensile strength of the glass fibers obtained through experiments increased from 2653.56 to 2856.83 MPa,which was confirmed by the corresponding molecular dynamics simulation.During the stretching process,the Si-O bonds in the Si-O-Al linkage tended to break regardless of the compositional changes,and the increase of fractured Si-O-Al and Al-O-Al linkage absorbed more energy to resist the destroy. 展开更多
关键词 aluminosilicate glass short-range structure molecular dynamics simulations tensile strength
原文传递
Dynamic Characteristic Testing of Wind Turbine Structure Based on Visual Monitoring Data Fusion
7
作者 Wenhai Zhao Wanrun Li +2 位作者 Ximei Li Shoutu Li Yongfeng Du 《Structural Durability & Health Monitoring》 2025年第3期593-611,共19页
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a... Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures. 展开更多
关键词 structural health monitoring dynamic characteristics computer vision vibration monitoring data fusion
在线阅读 下载PDF
Impact of corrugated structures on airfoil aerodynamic performance
8
作者 Jun LI Song XIE Xianshi CHEN 《Chinese Journal of Aeronautics》 2025年第10期347-359,共13页
The modification design of airfoil is a crucial aspect of aircraft design.Implementing corrugated structures on the lower wing surface can significantly affect the aerodynamic performance of the airfoil under specific... The modification design of airfoil is a crucial aspect of aircraft design.Implementing corrugated structures on the lower wing surface can significantly affect the aerodynamic performance of the airfoil under specific conditions.This study focuses on macroscale corrugated structures based on the Clark YM15 airfoil.A series of concave triangular corrugations were arranged on its lower surface,and various corrugated airfoil types were derived.Computational Fluid Dynamics(CFD)simulations were used to analyze the performance and flow characteristics of these corrugated airfoils,and to investigate the impact of structural parameters,quantity,and layout of the corrugations on the lift-to-drag performance of the airfoil.The results demonstrate that judiciously configured corrugated structures can enhance the lift-to-drag performance at a small angle of attack,with the double-corrugation structure showing the most significant improvement.Wind tunnel experiments were respectively conducted on the double-corrugation airfoil and the original airfoil,which validate the accuracy of the CFD simulations and confirm the lift and drag performance advantages of the corrugated airfoil over the original design. 展开更多
关键词 AerodynamicsAirfoils Computational Fluid dynamics(CFD) Corrugated structure Wind tunnels
原文传递
Dynamic Compressive Behavior and Stress Wave Attenuation Characteristics of Ti-6Al-4V Lattice Structure
9
作者 Shuai Zhang Xin Lai +3 位作者 Haiyan Niu Lisheng Liu Shifu Wang Jinyong Zhang 《Computer Modeling in Engineering & Sciences》 2025年第7期739-762,共24页
This study investigates the dynamic compressive behavior of three periodic lattice structures fabricated from Ti-6Al-4V titanium alloy,each with distinct topologies:simple cubic(SC),body-centered cubic(BCC),and face-c... This study investigates the dynamic compressive behavior of three periodic lattice structures fabricated from Ti-6Al-4V titanium alloy,each with distinct topologies:simple cubic(SC),body-centered cubic(BCC),and face-centered cubic(FCC).Dynamic compression experiments were conducted using a Split Hopkinson Pressure Bar(SHPB)system,complemented by high-speed imaging to capture real-time deformation and failure mechanisms under impact loading.The influence of cell topology,relative density,and strain rate on dynamic mechanical properties,failure behavior,and stress wave propagation was systematically examined.Finite element modeling was performed,and the simulated results showed good agreement with experimental data.The findings reveal that the dynamic mechanical properties of the lattice structures are generally insensitive to strain rate variations,while failure behavior is predominantly governed by structural configuration.The SC structure exhibited strut buckling and instability-induced fracture,whereas the BCC and FCC structures displayed layer-by-layer crushing with lower strain rate sensitivity.Regarding stress wave propagation,all structures demonstrated significant attenuation capabilities,with the BCC structure achieving the greatest reduction in transmitted wave amplitude and energy.Across all configurations,wave reflection was identified as the primary energy dissipation mechanism.These results provide critical insights into the design of lattice structures for impact mitigation and energy absorption applications. 展开更多
关键词 Lattice structure energy dissipation Split Hopkinson Pressure Bar dynamic mechanical behavior stress wave
在线阅读 下载PDF
Experimental and Numerical Analyses of the Dynamic Mechanical Properties of Hull Plate-Frame Structures Under Drop Weight Impacted Load
10
作者 ZONG Shuai LIU Kun +3 位作者 LU Yue HUANG Tian-bo LIU He-wei QIU Wei-jian 《China Ocean Engineering》 2025年第1期27-42,共16页
Experimental studies were conducted on two high-strength steel plate-frame structures with different truss spacings under various impact velocities to investigate the dynamic mechanical properties of hull plate-frame ... Experimental studies were conducted on two high-strength steel plate-frame structures with different truss spacings under various impact velocities to investigate the dynamic mechanical properties of hull plate-frame structures under drop weight impact.The results showed that decreasing the main beam spacing can effectively increase the structural stiffness,reduce the maximum deformation,and increase the damage range.Furthermore,to simulate the impact tests accurately,static and dynamic tensile tests at different strain rates were carried out,and the Cowper-Symonds model parameters were fitted via experimental data.The material properties obtained from the tensile tests were used as inputs for numerical simulations with the numerical results coincide with the experimental results.A systematic analysis and discussion were conducted on the effects of truss spacing and truss width on the dynamic response of the reinforced plates,and an optimal range for the ratio of truss spacing to truss width was proposed.In addition,a mesh size sensitivity analysis for ship hull plate frame collision simulations was performed.The applicability of the EPS,MMC,and RTCL failure criteria in the simulation of plate-frame structures was investigated via finite element simulations of falling weight impact tests.The research findings provide a reference for ship hull structure design and resilience assessment. 展开更多
关键词 ship collision hull plate-frame structure dynamic mechanical property collision model test numerical simulation
在线阅读 下载PDF
Investigation on dynamic response of liquid-filled cylindrical shellstructures under the action of combined blast and fragments loading
11
作者 Zhujie Zhao Hailiang Hou +4 位作者 Dian Li Xiaowei Wu Yongqing Li Zhenghan Chen Linzhi Wu 《Defence Technology(防务技术)》 2025年第7期334-354,共21页
This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri... This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation. 展开更多
关键词 Blast wave Combined blast and fragments loading Filling method Liquid-filled structure dynamic response
在线阅读 下载PDF
Interfacial thermal resistance in amorphous Mo/Si structures:A molecular dynamics study
12
作者 Weiwu Miao Hongyu He +3 位作者 Yi Tao Qiong Wu Chao Wu Chenhan Liu 《Chinese Physics B》 2025年第10期228-234,共7页
Efficient thermal management is critical to the reliability and performance of nanoscale electronic and photonic devices,particularly those incorporating multilayer structures.In this study,non-equilibrium molecular d... Efficient thermal management is critical to the reliability and performance of nanoscale electronic and photonic devices,particularly those incorporating multilayer structures.In this study,non-equilibrium molecular dynamics simulations were conducted to systematically investigate the effects of temperature,penetration depth,and Si layer thickness on the interfacial thermal resistance(ITR)in nanometer-scale Mo/Si multilayers,widely employed in extreme ultraviolet lithography.The results indicate that:(i)temperature variations exert a negligible influence on the ITR of amorphous Mo/Si interfaces,which remains stable across the range of 200-900 K;(ii)increasing penetration depth enhances the overlap of phonon density of states,thereby significantly reducing ITR;(iii)the ITR decreases with increasing Si thickness up to4.2 nm due to quasi-ballistic phonon transport,but rises again as phonon scattering becomes more pronounced at larger thicknesses.This study provides quantitative insights into heat transfer mechanisms at amorphous interfaces and also offers a feasible strategy for tailoring interfacial thermal transport through structural design. 展开更多
关键词 thermal management Mo/Si structure interface thermal resistance molecular dynamics simulation
原文传递
A Dynamic Social Network Graph Anonymity Scheme with Community Structure Protection
13
作者 Yuanjing Hao Xuemin Wang +2 位作者 Liang Chang Long Li Mingmeng Zhang 《Computers, Materials & Continua》 2025年第2期3131-3159,共29页
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ... Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL. 展开更多
关键词 dynamic social network graph k-composition anonymity community structure protection graph publishing security and privacy
在线阅读 下载PDF
Molecular dynamics simulation of relationship between local structure and dynamics during glass transition of Mg_7Zn_3 alloy 被引量:2
14
作者 侯兆阳 刘让苏 +2 位作者 徐春龙 帅学敏 舒瑜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1086-1093,共8页
The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated... The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr). 展开更多
关键词 Mg7Zn3 alloy glass transition dynamicS structural relaxation molecular dynamics simulation
在线阅读 下载PDF
DYNAMIC RESPONSE OPTIMIZATION DESIGN FOR ENGINEERING STRUCTURES BASED ON RELIABILITY 被引量:11
15
作者 戴君 陈建军 +2 位作者 李永公 赵竹青 马洪波 《应用数学和力学》 EI CSCD 北大核心 2003年第1期39-46,共8页
In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints o... In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach. 展开更多
关键词 工程结构 动力响应 动力灵敏度 可靠性约束 优化设计 动应力 动位移
在线阅读 下载PDF
Vegetation landscape structure and dynamics in sandy forest-steppe ecotone
16
作者 邹春静 韩士杰 +1 位作者 徐文铎 李道棠 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第4期303-306,共4页
Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, land... Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, landscape patches, and patch size were measured by the field investigation, forest photograph, and airscape. The structure of landscape patches in sandy forest-steppe ecotone, including composition structure, and size structure, was studied and the dynamics and transformation of landscape patches were analyzed. The data obtained in this study could provide theoretical basis for the research on vegetation landscape in forest-steppe ecotones and other vegetation types. 展开更多
关键词 Vegetation landscape structure dynamicS Sandy forest STEPPE ECOTONE
在线阅读 下载PDF
Structural Color Dynamic Graphics Display Based on Microlens Array 被引量:1
17
作者 LI Xue-han LIU Ling-zhi +1 位作者 HUANG Min LI Xiu 《印刷与数字媒体技术研究》 北大核心 2025年第2期162-168,共7页
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be... It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display. 展开更多
关键词 structural color Microlens array dynamic graphics display Moirémagnification Optical anti-counterfeiting
在线阅读 下载PDF
Nanograting‑Based Dynamic Structural Colors Using Heterogeneous Materials
18
作者 Jingang Wang Haibo Yu +6 位作者 Jianchen Zheng Yuzhao Zhang Hongji Guo Ye Qiu Xiaoduo Wang Yongliang Yang Lianqing Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期138-151,共14页
Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov... Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips. 展开更多
关键词 dynamic structural colors Four-dimensional printing PH-RESPONSIVE Nanogrid Heterogeneous materials
在线阅读 下载PDF
Hydrodynamic Performance and Structural Response of a Sharp Eagle Wave Energy Converter Platform Under Extreme Sea States 被引量:1
19
作者 YUE Wan-zhen WANG Kun-lin +4 位作者 JIANG Jia-qiang SHENG Song-wei LU Wen-zhao HE Teng YANG Xian-yuan 《China Ocean Engineering》 2025年第2期373-382,共10页
This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and stru... This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and structural response of the platform are studied,considering the actual platform motion and free surface rise under extreme sea states.First,the effects of the wave frequency and direction on the wave-induced loads and dynamic responses were examined.The motion at a wave direction angle of 0°is relatively low.On this basis,the angle constrained by the two sides of the Sharp Eagle floaters should be aligned with the main wave direction to avoid significant platform motion under extreme sea states.Additionally,the structural response of the platform,including the wave-absorbing floaters,is investigated.The results highlighted that the conditions or locations where yielding,buckling,and fatigue failures occur were different.In this context,the connection area of the Sharp Eagle floaters and platform is prone to yielding failure under oblique wave action,whereas the pontoon and side of the Sharp Eagle floaters are prone to buckling failure during significant vertical motion.Additionally,fatigue damage is most likely to occur at the connection between the middle column on both sides of the Sharp Eagle floaters and the pontoons.The findings of this paper revealed an intrinsic connection between wave-induced loads and the dynamic and structural responses of the platform,which provides a useful reference for the improved design of WECs. 展开更多
关键词 wave energy converter extreme sea states finite element analysis dynamic response structural response
在线阅读 下载PDF
Dynamic behavior of new cutting subgrade structure of expensive soil under train loads coupling with service environment 被引量:17
20
作者 QIU Ming-ming YANG Guo-lin +3 位作者 SHEN Quan YANG Xiao WANG Gang LIN Yu-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期875-890,共16页
Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. ... Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil. 展开更多
关键词 high-speed RAILWAY FULL-SCALE model testing dynamic response expansive SOIL service environment NEW SUBGRADE structure
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部