The joint study of agriculture and rural areas is of great significance for safeguarding agricultural development,revitalizing rural areas,and enhancing farmers'well-being.This paper aims to assess the spatiotempo...The joint study of agriculture and rural areas is of great significance for safeguarding agricultural development,revitalizing rural areas,and enhancing farmers'well-being.This paper aims to assess the spatiotemporal evolution characteristics of the coupling and coordination degree of agricultural resilience and rural land use efficiency and their dynamic transfer law and driving mechanisms,based on panel data of 31 provinces(municipalities and autonomous regions)in China from 2010 to 2020.The results showed:(1)Good coupling and coordination of agricultural resilience and rural land use efficiency,with reduced temporal differentiation degrees between regions;(2)Significant spatial autocorrelation between the overall coupling and coordination degrees of agricultural resilience and rural land use efficiency,forming cold spot and hot spot spatial patterns in the western and eastern parts,respectively,with a central transition area;(3)A spillover effect of the dynamic transfer process,with a manifested specific law as"club convergence","Matthew effect",and progressive development characteristics;(4)The key roles of the natural,social,economic,and policy indicators in the coupling and coordination development process of agricultural resilience and rural land use efficiency.However,the selected indicators showed substantial spatial differences in their influences on the coupling and coordination process between provinces.展开更多
Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thi...Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thin CuInS_(2)nanosheets were prepared through a solvothermal method.Subsequently,metallic Ni was surface-modified onto CuInS_(2)through photo-deposition to serve as a co-catalyst.The optimized photocatalyst exhibited a hydrogen production rate of 15.5 mmol·g^(-1)·h^(-1)in water when used an ascorbic acid as hole scavenger,which is 9 times that of the original CuInS_(2).Transient absorption spectra(TAS)analysis demonstrates that the hole transfer from CuInS_(2)nanosheets to ascorbic acid,yielding a long-lived electron with a lifetime of 45.6μs.The electrons in CuInS_(2)are efficiently captured by Ni as active sites for driving hydrogen evolution.In situ TAS further indicates that ascorbic acid and Ni sites synergistically promote the electron transfer dynamics of CuInS_(2),achieving an electron transfer efficiency of 48.4%.This work provides a viable strategy for designing highly efficient photocatalysts with enhanced charge transfer.展开更多
A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid ...A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid dynamics.The effects of the applied voltage on the distribution of velocity and temperature in initially static air are parainetrically studied.Furthermore,the spatial structure of plasma discharge and the resulting force contours in streamwise and normal directions are discussed in detail.The result shows that the plasma actuator produces a net force that should always be directed away from the exposed electrode,which results in an ionic wind pushing particles into a jet downstream of the actuator.When the energy added by the plasma is taken into account,the ambient air temperature is increased slightly around the electrode,but the velocity is almost not affected.Therefore it is unlikely that the induced flow is buoyancy driven.For the operating voltages considered in this paper,the maximum induced velocity is found to follow a power law,i.e.,it is proportional to the applied voltage to the 3.5 power.This promises an efficient application in the flow control with plasma actuators.展开更多
The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can pr...The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can provide maximized D/A interfacial area for exciton dissociation and appro p riate domain size of the exciton diffusion length,which is beneficial to obtain high-performance OSCs.Here,we comprehensively investigated the relationship between various D:A blend ratios and the charge transfer and energy transfer mechanisms in OSCs based on PBDB-T and non-fullerene acceptor IT-M.Based on various D:A blend ratios,it was found that the ratio of components is a key factor to suppress the formation of triplet states and recombination energy losses.Rational D:A blend ratios can provide appropriate donor/accepter surface for charge transfer which has been powerfully verified by various detailed experimental results from the time-resolved fluorescence measurement and transient absorption(TA) spectroscopy.Optimized coherence length and crystallinity are verified by grazing incident wide-angle X-ray scattering(GIWAXS) measurements.The results are bene ficial to comprehend the effects of various D:A blend ratios on charge transfer and energy transfer dynamics and provides constructive suggestions for rationally designing new materials and feedback for photovoltaic performance optimization in non-fullerene OSCs.展开更多
We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if th...We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if the distance between the molecules is oscillating. Our results demonstrate that the motional effect plays a constructive role on quantum entanglement in the dynamics of excitation transfer. This mechanism might provide a useful guideline for designing artificial systems to battle against decoherence.展开更多
Nanofluidics in hydrophilic nanopores is a common issue in many natural and industrial processes. Among all,the mass transport of nanofluidics is most concerned. Besides that, the heat transfer of a fluid flow in nano...Nanofluidics in hydrophilic nanopores is a common issue in many natural and industrial processes. Among all,the mass transport of nanofluidics is most concerned. Besides that, the heat transfer of a fluid flow in nano or micro channels is always considered with adding nanoparticles into the flow, so as to enhance the heat transfer by convection between the fluid and the surface. However, for some applications with around 1 nm channels such as nano filtration or erosion of rocks, there should be no nanoparticles included. Hence, it is necessary to figure out the heat transfer mechanism in the single phase nanofluidics. Via non-equilibrium molecular dynamics simulations, we revealed the heat transfer inside nanofluidics and the one between fluid and walls by setting simulation into extremely harsh condition. It was found that the heat was conducted by molecular motion without temperature gradient in the area of low viscous heat, while it was transferred to the walls by increasing the temperature of fluids. If the condition back to normal, it was found that the viscous heat of nanofluidics could be easily removed by the fluid-wall temperature drop of less than 1 K.展开更多
An emerging S-scheme photocatalyst consisting of Ni-doped Zn_(0.2)Cd_(0.8)S quantum dots and TiO_(2)micro-spheres has been reported to show excellent H2 production performance and high benzylidene benzy-lamine evoluti...An emerging S-scheme photocatalyst consisting of Ni-doped Zn_(0.2)Cd_(0.8)S quantum dots and TiO_(2)micro-spheres has been reported to show excellent H2 production performance and high benzylidene benzy-lamine evolution efficiency.To monitor the charge transfer dynamics in this S-scheme heterojunction,femtosecond transient absorption spectroscopy measurements are conducted.The charge transfer kinetic analysis confirms that S-scheme heterojunction promotes interfacial electron transfer and accelerates hole consumption.This work provides an in-depth explanation for the enhanced photocatalytic performance of S-scheme photocatalysts from the perspective of charge dynamics.展开更多
Although triboelectrification(TE)is essential in many industrial and scientific fields,its charge transfer mechanisms are still not fully understood.In this paper,the charging-induced electric potential on the frictio...Although triboelectrification(TE)is essential in many industrial and scientific fields,its charge transfer mechanisms are still not fully understood.In this paper,the charging-induced electric potential on the friction surface and the discharging-induced light emission from the contact region during sliding frictions between insulators have been observed simultaneously.The results show that,in the absence of discharging,the temporal variations of surface potential at all the contact points are almost the same,experiencing a rapid growth in the initial stage,followed by a slow growth,and eventually reaching a stable value.To explain such a dynamics of electron transfer,a theoretical expression for the temporal evolution of the surface potential during TE process is proposed by considering the electron transfer as the charging process of a capacitor formed by contacting surfaces,and is found consistent with the experimental measurements.The experiments further indicate that,when discharging occurs,it has no influence on the charging process of the initially negatively charged surface,but can greatly change the charging of the initially positively charged surface,on which the potential will increase initially,soon begin to decrease,and eventually reach a stable value.Such a significant difference in the potential variation when discharging occurs can be attributed to the huge difference in mass between electrons and positive ions produced in the discharging process.The present work may offer a new perspective for understanding the electron transfer dynamics in TE and may provide potential applications in numerous fields involving TE.展开更多
In modern warfare,fortifications are being placed deeper underground and with increased mechanical strength,placing higher demands on the target speed of the penetrating munitions that attack them.In such practical sc...In modern warfare,fortifications are being placed deeper underground and with increased mechanical strength,placing higher demands on the target speed of the penetrating munitions that attack them.In such practical scenarios,penetrating fuze inevitably experience extreme mechanical loads with long pulse durations and high shock strengths.Experimental results indicate that their shock accelerations can even exceed those of the projectile by several times.However,due to the unclear understanding of the dynamic transfer mechanism of the penetrating fuze system under such extreme mechanical conditions,there is still a lack of effective methods to accurately estimate and design protection against the impact loads on the penetrating fuze.This paper focuses on the dynamic response of penetrating munitions and fuzes under high impact,establishing a nonlinear dynamic transfer model for penetrating fuze systems,which can calculate the sensor overload signal of the fuze location.The results show that the relative error between the peak acceleration obtained by the proposed multibody dynamic transfer model and that obtained by experimental tests is only 15.7%,which is much lower than the 26.4%error between finite element simulations and experimental tests.The computational burden of the proposed method mainly lies in the parameter calibration process,which needs to be performed only once for a specific projectile‐fuze system.Once calibrated,the model can rapidly conduct parameter scanning simulations for the projectile mass,target plate strength,and impact velocity with an extremely low computational cost to obtain the response characteristics of the projectile‐fuze system under various operating conditions.This greatly facilitates the practical engineering design of penetrating ammunition fuze.展开更多
In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many me...In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared.展开更多
This paper investigates the application of Direct Current Atmospheric Plasma Spraying(DC-APS)as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates.The pr...This paper investigates the application of Direct Current Atmospheric Plasma Spraying(DC-APS)as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates.The process uses a high-speed,high-temperature plasma jet to melt and propel the feedstock powder particles,making it particularly useful for improving the performance and durability of components in renewable energy systems such as solar cells,wind turbines,and fuel cells.The integration of nanostructured alumina(Al_(2)O_(3))thin films into multilayer coatings is considered a promising advancement that improves mechanical strength,thermal stability,and environmental resistance.The study highlights the importance of understanding injection parameters and their impact on coating properties and uses simulation tools such as the Jets&Poudres(JP)code for in-depth analysis.Furthermore,the paper discusses the implementation of Artificial Neural Networks(ANN)to optimize the coating process by predicting flight characteristics and improving operating conditions.The results show that ANN models are effective in achieving highly accurate prediction values,highlighting the potential of AI in improving thermal spray technology.展开更多
Despite being an excellent candidate for a photocathode,Cu_(2)ZnSnS_4(CZTS)performance is limited by suboptimal bulk and interfacial charge carrier dynamics.In this work,we introduce a facile and versatile CZTS precur...Despite being an excellent candidate for a photocathode,Cu_(2)ZnSnS_4(CZTS)performance is limited by suboptimal bulk and interfacial charge carrier dynamics.In this work,we introduce a facile and versatile CZTS precursor seed layer engineering technique,which significantly enhances crystal growth and mitigates detrimental defects in the postsulfurized CZTS light-absorbing films.This effective optimization of defects and charge carrier dynamics results in a highly efficient CZTS/CdS/TiO_(2)/Pt thin-film photocathode,achieving a record half-cell solar-to-hydrogen(HC-STH)conversion efficiency of 9.91%.Additionally,the photocathode exhibits a highest photocurrent density(J_(ph))of 29.44 m A cm^(-2)(at 0 VRHE)and favorable onset potential(Von)of 0.73 VRHE.Furthermore,our CTZS photocathode demonstrates a remarkable Jph of 16.54 m A cm^(-2)and HC-STH efficiency of 2.56%in natural seawater,followed by an impressive unbiased STH efficiency of 2.20%in a CZTS-BiVO_4 tandem cell.The scalability of this approach is underscored by the successful fabrication of a 4×4 cm^(2)module,highlighting its significant potential for practical,unbiased in situ solar seawater splitting applications.展开更多
A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain p...A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.展开更多
A decision model of knowledge transfer is presented on the basis of the characteristics of knowledge transfer in a big data environment.This model can determine the weight of knowledge transferred from another enterpr...A decision model of knowledge transfer is presented on the basis of the characteristics of knowledge transfer in a big data environment.This model can determine the weight of knowledge transferred from another enterprise or from a big data provider.Numerous simulation experiments are implemented to test the efficiency of the optimization model.Simulation experiment results show that when increasing the weight of knowledge from big data knowledge provider,the total discount expectation of profits will increase,and the transfer cost will be reduced.The calculated results are in accordance with the actual economic situation.The optimization model can provide useful decision support for enterprises in a big data environment.展开更多
This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed...This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.展开更多
Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. T...Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function.展开更多
The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems ...The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems (pigments) coupled to high-energy vibrational modes, we find that the high-energy intramolecular vibrational modes can enhance the energy transfer with new coherent transfer channels being opened when the phonon energy matches the detuning between the two pigments. As a result, the energy can be effectively transferred into the acceptor. The effective Hamiltonian is obtained to reveal the strong coherent energy exchange among the donor, the acceptor, and the high-energy intramolecular. A semi-classical explanation of the phonon-assisted mechanism is also shown.展开更多
Thermal decomposition of a famous high oxidizer arnrnoniurn dinitrarnide (ADN) under high temperatures (2000 and 3000 K) was studied by using the ab initio molecular dynamics method. Two different ternperature-dep...Thermal decomposition of a famous high oxidizer arnrnoniurn dinitrarnide (ADN) under high temperatures (2000 and 3000 K) was studied by using the ab initio molecular dynamics method. Two different ternperature-dependent initial decomposition mechanisms were observed in the unirnolecular decomposition of ADN, which were the intrarnolecular hydrogen transfer and N-NO2 cleavage in N(NO2) . They were competitive at 2000 K, whereas the forrner one was predominant at 3000 K. As for the rnultimolecular decomposition of ADN, four different initial decomposition reactions that were also ternperature-dependent were observed. Apart from the aforernentioned rnechanisrns, another two new reactions were the interrnolecular hydrogen transfer and direct N-H cleavage in NH4+. At the temperature of 2000 K, the N-NO2 cleavage competed with the rest three hydrogen-related decomposition reactions, while the direct N-H cleavage in NH4+ was predominant at 3000 K. After the initial decomposition, it was found that the temperature increase could facilitate the decomposition of ADN, and would not change the key decomposition events. ADN decomposed into small molecules by hydrogen-prornoted simple, fast and direct chemical bonds cleavage without forrning any large intermediates that rnay impede the decomposition. The main decomposition products at 2000 and 3000 K were the same, which were NH3, NO2, NO, N2O, N2, H2O, and HNO2.展开更多
Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in...Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.展开更多
Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further pu...Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.展开更多
基金Natural Science Foundation of Heilongjiang,No.LH2023D019Philosophy and Social Sciences Research Program of Heilongjiang,No.21JLE323。
文摘The joint study of agriculture and rural areas is of great significance for safeguarding agricultural development,revitalizing rural areas,and enhancing farmers'well-being.This paper aims to assess the spatiotemporal evolution characteristics of the coupling and coordination degree of agricultural resilience and rural land use efficiency and their dynamic transfer law and driving mechanisms,based on panel data of 31 provinces(municipalities and autonomous regions)in China from 2010 to 2020.The results showed:(1)Good coupling and coordination of agricultural resilience and rural land use efficiency,with reduced temporal differentiation degrees between regions;(2)Significant spatial autocorrelation between the overall coupling and coordination degrees of agricultural resilience and rural land use efficiency,forming cold spot and hot spot spatial patterns in the western and eastern parts,respectively,with a central transition area;(3)A spillover effect of the dynamic transfer process,with a manifested specific law as"club convergence","Matthew effect",and progressive development characteristics;(4)The key roles of the natural,social,economic,and policy indicators in the coupling and coordination development process of agricultural resilience and rural land use efficiency.However,the selected indicators showed substantial spatial differences in their influences on the coupling and coordination process between provinces.
文摘Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thin CuInS_(2)nanosheets were prepared through a solvothermal method.Subsequently,metallic Ni was surface-modified onto CuInS_(2)through photo-deposition to serve as a co-catalyst.The optimized photocatalyst exhibited a hydrogen production rate of 15.5 mmol·g^(-1)·h^(-1)in water when used an ascorbic acid as hole scavenger,which is 9 times that of the original CuInS_(2).Transient absorption spectra(TAS)analysis demonstrates that the hole transfer from CuInS_(2)nanosheets to ascorbic acid,yielding a long-lived electron with a lifetime of 45.6μs.The electrons in CuInS_(2)are efficiently captured by Ni as active sites for driving hydrogen evolution.In situ TAS further indicates that ascorbic acid and Ni sites synergistically promote the electron transfer dynamics of CuInS_(2),achieving an electron transfer efficiency of 48.4%.This work provides a viable strategy for designing highly efficient photocatalysts with enhanced charge transfer.
基金supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51121004)National Natural Science Foundation of China(No.50976026)
文摘A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid dynamics.The effects of the applied voltage on the distribution of velocity and temperature in initially static air are parainetrically studied.Furthermore,the spatial structure of plasma discharge and the resulting force contours in streamwise and normal directions are discussed in detail.The result shows that the plasma actuator produces a net force that should always be directed away from the exposed electrode,which results in an ionic wind pushing particles into a jet downstream of the actuator.When the energy added by the plasma is taken into account,the ambient air temperature is increased slightly around the electrode,but the velocity is almost not affected.Therefore it is unlikely that the induced flow is buoyancy driven.For the operating voltages considered in this paper,the maximum induced velocity is found to follow a power law,i.e.,it is proportional to the applied voltage to the 3.5 power.This promises an efficient application in the flow control with plasma actuators.
基金supported by the National Natural Science Foundation of China(Nos.11774204,11804084)Major Program of Natural Science Foundation 25 of Shandong Province(No.ZR2019ZD43)+2 种基金the Fundamental Research Funds of Shandong University(No.2018JC034)support from the ARC Centre of Excellence in Exciton Science(No.CE170100026)the Shanghai Synchrotron Radiation Facility(beamline BL16B1)for providing the beam time for GIWAXS measurements。
文摘The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can provide maximized D/A interfacial area for exciton dissociation and appro p riate domain size of the exciton diffusion length,which is beneficial to obtain high-performance OSCs.Here,we comprehensively investigated the relationship between various D:A blend ratios and the charge transfer and energy transfer mechanisms in OSCs based on PBDB-T and non-fullerene acceptor IT-M.Based on various D:A blend ratios,it was found that the ratio of components is a key factor to suppress the formation of triplet states and recombination energy losses.Rational D:A blend ratios can provide appropriate donor/accepter surface for charge transfer which has been powerfully verified by various detailed experimental results from the time-resolved fluorescence measurement and transient absorption(TA) spectroscopy.Optimized coherence length and crystallinity are verified by grazing incident wide-angle X-ray scattering(GIWAXS) measurements.The results are bene ficial to comprehend the effects of various D:A blend ratios on charge transfer and energy transfer dynamics and provides constructive suggestions for rationally designing new materials and feedback for photovoltaic performance optimization in non-fullerene OSCs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374085,61073048 and 11274010the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20113401110002+3 种基金the 211 Project of Anhui Universitythe Anhui Provincial Natural Science Foundation under Grant No 1408085MA20the Personnel Department of Anhui Provincethe 136 Foundation of Hefei Normal University under Grant No 2014136KJB04
文摘We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if the distance between the molecules is oscillating. Our results demonstrate that the motional effect plays a constructive role on quantum entanglement in the dynamics of excitation transfer. This mechanism might provide a useful guideline for designing artificial systems to battle against decoherence.
基金Supported by the National Basic Research Program of China(2015CB655301)the National Natural Science Foundation of China(21506091)+2 种基金the Jiangsu Natural Science Foundations(BK20150944)the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Nanofluidics in hydrophilic nanopores is a common issue in many natural and industrial processes. Among all,the mass transport of nanofluidics is most concerned. Besides that, the heat transfer of a fluid flow in nano or micro channels is always considered with adding nanoparticles into the flow, so as to enhance the heat transfer by convection between the fluid and the surface. However, for some applications with around 1 nm channels such as nano filtration or erosion of rocks, there should be no nanoparticles included. Hence, it is necessary to figure out the heat transfer mechanism in the single phase nanofluidics. Via non-equilibrium molecular dynamics simulations, we revealed the heat transfer inside nanofluidics and the one between fluid and walls by setting simulation into extremely harsh condition. It was found that the heat was conducted by molecular motion without temperature gradient in the area of low viscous heat, while it was transferred to the walls by increasing the temperature of fluids. If the condition back to normal, it was found that the viscous heat of nanofluidics could be easily removed by the fluid-wall temperature drop of less than 1 K.
基金supported by the National Natural Science Foun-dation of China(No.52202375)the International Postdoctoral Ex-change Fellowship Program(No.PC2022051)the China Post-doctoral Science Foundation(Nos.2021TQ0311 and 2021M702990).
文摘An emerging S-scheme photocatalyst consisting of Ni-doped Zn_(0.2)Cd_(0.8)S quantum dots and TiO_(2)micro-spheres has been reported to show excellent H2 production performance and high benzylidene benzy-lamine evolution efficiency.To monitor the charge transfer dynamics in this S-scheme heterojunction,femtosecond transient absorption spectroscopy measurements are conducted.The charge transfer kinetic analysis confirms that S-scheme heterojunction promotes interfacial electron transfer and accelerates hole consumption.This work provides an in-depth explanation for the enhanced photocatalytic performance of S-scheme photocatalysts from the perspective of charge dynamics.
基金supported by the National Natural Science Foundation of China(52375166).
文摘Although triboelectrification(TE)is essential in many industrial and scientific fields,its charge transfer mechanisms are still not fully understood.In this paper,the charging-induced electric potential on the friction surface and the discharging-induced light emission from the contact region during sliding frictions between insulators have been observed simultaneously.The results show that,in the absence of discharging,the temporal variations of surface potential at all the contact points are almost the same,experiencing a rapid growth in the initial stage,followed by a slow growth,and eventually reaching a stable value.To explain such a dynamics of electron transfer,a theoretical expression for the temporal evolution of the surface potential during TE process is proposed by considering the electron transfer as the charging process of a capacitor formed by contacting surfaces,and is found consistent with the experimental measurements.The experiments further indicate that,when discharging occurs,it has no influence on the charging process of the initially negatively charged surface,but can greatly change the charging of the initially positively charged surface,on which the potential will increase initially,soon begin to decrease,and eventually reach a stable value.Such a significant difference in the potential variation when discharging occurs can be attributed to the huge difference in mass between electrons and positive ions produced in the discharging process.The present work may offer a new perspective for understanding the electron transfer dynamics in TE and may provide potential applications in numerous fields involving TE.
基金Key Basic Research Projects of Basic Strengthening Plan of China,Grant/Award Number:2021-JCJQ-JJ-0597National Natural Science Foundation of China,Grant/Award Number:52007084Postgraduate Research Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23_0518。
文摘In modern warfare,fortifications are being placed deeper underground and with increased mechanical strength,placing higher demands on the target speed of the penetrating munitions that attack them.In such practical scenarios,penetrating fuze inevitably experience extreme mechanical loads with long pulse durations and high shock strengths.Experimental results indicate that their shock accelerations can even exceed those of the projectile by several times.However,due to the unclear understanding of the dynamic transfer mechanism of the penetrating fuze system under such extreme mechanical conditions,there is still a lack of effective methods to accurately estimate and design protection against the impact loads on the penetrating fuze.This paper focuses on the dynamic response of penetrating munitions and fuzes under high impact,establishing a nonlinear dynamic transfer model for penetrating fuze systems,which can calculate the sensor overload signal of the fuze location.The results show that the relative error between the peak acceleration obtained by the proposed multibody dynamic transfer model and that obtained by experimental tests is only 15.7%,which is much lower than the 26.4%error between finite element simulations and experimental tests.The computational burden of the proposed method mainly lies in the parameter calibration process,which needs to be performed only once for a specific projectile‐fuze system.Once calibrated,the model can rapidly conduct parameter scanning simulations for the projectile mass,target plate strength,and impact velocity with an extremely low computational cost to obtain the response characteristics of the projectile‐fuze system under various operating conditions.This greatly facilitates the practical engineering design of penetrating ammunition fuze.
文摘In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared.
文摘This paper investigates the application of Direct Current Atmospheric Plasma Spraying(DC-APS)as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates.The process uses a high-speed,high-temperature plasma jet to melt and propel the feedstock powder particles,making it particularly useful for improving the performance and durability of components in renewable energy systems such as solar cells,wind turbines,and fuel cells.The integration of nanostructured alumina(Al_(2)O_(3))thin films into multilayer coatings is considered a promising advancement that improves mechanical strength,thermal stability,and environmental resistance.The study highlights the importance of understanding injection parameters and their impact on coating properties and uses simulation tools such as the Jets&Poudres(JP)code for in-depth analysis.Furthermore,the paper discusses the implementation of Artificial Neural Networks(ANN)to optimize the coating process by predicting flight characteristics and improving operating conditions.The results show that ANN models are effective in achieving highly accurate prediction values,highlighting the potential of AI in improving thermal spray technology.
基金supported by National Natural Science Foundation of China(No.62474114,52472225)Guangdong Basic and Applied Basic Research Foundation(2025A1515012041,2025A1515011515)China+1 种基金Science and Technology plan project of Shenzhen(JCYJ20240813141620027,20231122102326002)ChinaShenzhen University 2035 Program for Excellent Research(Grants 2024B003)。
文摘Despite being an excellent candidate for a photocathode,Cu_(2)ZnSnS_4(CZTS)performance is limited by suboptimal bulk and interfacial charge carrier dynamics.In this work,we introduce a facile and versatile CZTS precursor seed layer engineering technique,which significantly enhances crystal growth and mitigates detrimental defects in the postsulfurized CZTS light-absorbing films.This effective optimization of defects and charge carrier dynamics results in a highly efficient CZTS/CdS/TiO_(2)/Pt thin-film photocathode,achieving a record half-cell solar-to-hydrogen(HC-STH)conversion efficiency of 9.91%.Additionally,the photocathode exhibits a highest photocurrent density(J_(ph))of 29.44 m A cm^(-2)(at 0 VRHE)and favorable onset potential(Von)of 0.73 VRHE.Furthermore,our CTZS photocathode demonstrates a remarkable Jph of 16.54 m A cm^(-2)and HC-STH efficiency of 2.56%in natural seawater,followed by an impressive unbiased STH efficiency of 2.20%in a CZTS-BiVO_4 tandem cell.The scalability of this approach is underscored by the successful fabrication of a 4×4 cm^(2)module,highlighting its significant potential for practical,unbiased in situ solar seawater splitting applications.
文摘A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.
基金supported by NSFC(Grant No.71373032)the Natural Science Foundation of Hunan Province(Grant No.12JJ4073)+3 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.11C0029)the Educational Economy and Financial Research Base of Hunan Province(Grant No.13JCJA2)the Project of China Scholarship Council for Overseas Studies(201208430233201508430121)
文摘A decision model of knowledge transfer is presented on the basis of the characteristics of knowledge transfer in a big data environment.This model can determine the weight of knowledge transferred from another enterprise or from a big data provider.Numerous simulation experiments are implemented to test the efficiency of the optimization model.Simulation experiment results show that when increasing the weight of knowledge from big data knowledge provider,the total discount expectation of profits will increase,and the transfer cost will be reduced.The calculated results are in accordance with the actual economic situation.The optimization model can provide useful decision support for enterprises in a big data environment.
基金supported by The National Natural Science Foundation for Young Scientists of China under Grant No.61303263the Jiangsu Provincial Research Foundation for Basic Research(Natural Science Foundation)under Grant No.BK20150201+4 种基金the Scientific Research Key Project of Beijing Municipal Commission of Education under Grant No.KZ201210015015Project Supported by the National Natural Science Foundation of China(Grant No.61370140)the Scientific Research Common Program of the Beijing Municipal Commission of Education(Grant No.KMKM201410015006)The National Science Foundation of China under Grant Nos.61232016 and U1405254and the PAPD fund
文摘This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.
基金National Hi-tech Research and Development Program of China(863 Program,No.2001AA42330).
文摘Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174233)
文摘The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems (pigments) coupled to high-energy vibrational modes, we find that the high-energy intramolecular vibrational modes can enhance the energy transfer with new coherent transfer channels being opened when the phonon energy matches the detuning between the two pigments. As a result, the energy can be effectively transferred into the acceptor. The effective Hamiltonian is obtained to reveal the strong coherent energy exchange among the donor, the acceptor, and the high-energy intramolecular. A semi-classical explanation of the phonon-assisted mechanism is also shown.
基金supported by the Fundamental Research Funds for the Central Universities (No.30916011315)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (No.30916011317)
文摘Thermal decomposition of a famous high oxidizer arnrnoniurn dinitrarnide (ADN) under high temperatures (2000 and 3000 K) was studied by using the ab initio molecular dynamics method. Two different ternperature-dependent initial decomposition mechanisms were observed in the unirnolecular decomposition of ADN, which were the intrarnolecular hydrogen transfer and N-NO2 cleavage in N(NO2) . They were competitive at 2000 K, whereas the forrner one was predominant at 3000 K. As for the rnultimolecular decomposition of ADN, four different initial decomposition reactions that were also ternperature-dependent were observed. Apart from the aforernentioned rnechanisrns, another two new reactions were the interrnolecular hydrogen transfer and direct N-H cleavage in NH4+. At the temperature of 2000 K, the N-NO2 cleavage competed with the rest three hydrogen-related decomposition reactions, while the direct N-H cleavage in NH4+ was predominant at 3000 K. After the initial decomposition, it was found that the temperature increase could facilitate the decomposition of ADN, and would not change the key decomposition events. ADN decomposed into small molecules by hydrogen-prornoted simple, fast and direct chemical bonds cleavage without forrning any large intermediates that rnay impede the decomposition. The main decomposition products at 2000 and 3000 K were the same, which were NH3, NO2, NO, N2O, N2, H2O, and HNO2.
基金This project is supported by National Natural Science Foundation of China (No.50375026)Provincial Fifteen Great Public Bidding Items of Jiangsu (No.BE2001068).
文摘Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.
文摘Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.