期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Improving Tribological Performance of Gray Cast Iron by Laser Peening in Dynamic Strain Aging Temperature Regime 被引量:5
1
作者 FENG Xu ZHOU Jianzhong +3 位作者 MEI Yufen HUANG Shu SHENG Jie ZHU Weili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期904-910,共7页
A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in m... A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in material composition and shape design optimization. In the dynamic strain aging(DSA) temperature regime of gray cast iron, micro-dimples with different dimple depth over diameter and surface area density are fabricated on the material surface by laser peening(LP) which is an LST method. Friction behavior and wear mechanism are investigated to evaluate the effects of surface texturing on the tribological performance of specimens under dry conditions. Through LP impacts assisted by DSA, the friction coefficients of the LPed specimens increase noticeably both at room temperature and elevated temperature in comparison to untreated specimens. Moreover, the coefficient of specimen with dimple depth over diameter of 0.03 and surface area density of 30% is up to 0.351 at room temperature, which dramatically rises up to 1.33 times that of untextured specimen and the value is still up to 0.3305 at 400℃ with an increasing ratio of 35% compared to that of untreated specimen. The surface of textured specimen shows better wear resistance compared to untreated specimen. Wear mechanism includes adhesive wear, abrasive wear and oxidation wear. It is demonstrated that LP assisted by DSA can substantially improve wear resistance, raise the friction coefficient as well as its stability of gray cast iron under elevated temperatures. Heat fade and premature wear can be effectively relieved by this surface modification method. 展开更多
关键词 laser peening micro-dimples dynamic strain aging friction coefficient
在线阅读 下载PDF
Stress-state dependence of dynamic strain aging:Thermal hardening and blue brittleness 被引量:3
2
作者 Wen-qi Liu Jun-he Lian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期854-866,共13页
This study aims to discover the stress-state dependence of the dynamic strain aging(DSA)effect on the deformation and fracture behavior of high-strength dual-phase(DP)steel at different deformation temperatures(25-400... This study aims to discover the stress-state dependence of the dynamic strain aging(DSA)effect on the deformation and fracture behavior of high-strength dual-phase(DP)steel at different deformation temperatures(25-400°C)and reveal the damage mechanisms under these various configurations.To achieve different stress states,predesigned specimens with different geometric features were used.Scanning electron microscopy was applied to analyze the fracture modes(e.g.,dimple or shear mode)and underlying damage mechanism of the investigated material.DSA is present in this DP steel,showing the Portevin-Le Chatelier(PLC)effect with serrated flow behavior,thermal hardening,and blue brittleness phenomena.Results show that the stress state contributes distinctly to the DSA effect in terms of the magnitude of thermal hardening and the pattern of blue brittleness.Either low stress triaxiality or Lode angle parameter promotes DSA-induced blue brittleness.Accordingly,the damage mechanisms also show dependence on the stress states in conjunction with the DSA effect. 展开更多
关键词 dynamic strain aging effect Portevin-Le Chatelier effect damage mechanism dimple fracture shear fracture dual-phase steel
在线阅读 下载PDF
Effect of strain rate and temperature on the serration behavior of SA508-Ⅲ RPV steel in the dynamic strain aging process 被引量:3
3
作者 Xue Bai Su-jun Wu +3 位作者 Li-jun Wei Shuai Luo Xie Xie Peter K. Liaw 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期767-775,共9页
Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1× 10-5 s-1 and 6.6... Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1× 10-5 s-1 and 6.6× 10-5 s-1) and different temperatures (500 and 550 ℃) to evaluate the influence of strain rate and temperature on the serrated flow behavior, which is the repetitive and discontinuous yielding phenomenon on the stress-strain curves. The higher temperature leads to the higher density of precipitates, M23C6 carbides and needle-like Mo2C carbides. It was found that the samples under tension test of 6.6 × 10-5 s-1 and 500 ℃ possess superior mechanical properties and mainly show A-type serrations on the tension test curves. Then, the local regress method was used to filter the DSA curves, thus to show the real trend of the curves. It has been found that the less time of interaction between dislocations and precipitates under higher strain rates leads to a higher strength of the sample. The more tiny-stress drops on the 550 ℃ serration curve can be attributed to the hardening phase, M23C6 carbides and needle-like Mo2C carbides. The higher percentage of the small stress drops on the serration curves represents the higher mechanical strength. 展开更多
关键词 Reactor pressure vessel steel SA508-Ⅲ steel dynamic strain aging Serration behavior
原文传递
A New Strategy for Restraining Dynamic Strain Aging in GH4169 Alloy During Tensile Deformation at High Temperature 被引量:2
4
作者 Xin-Tong Lian Jin-Lan An +1 位作者 Lei Wang Han Dong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第11期1895-1902,共8页
The dynamic strain aging(DSA) behavior was investigated in GH4169 alloy during tensile deforming with electric-pulse current(EPC) at 750 ℃.The results show that DSA is restrained in the alloy when deformed with 40 Hz... The dynamic strain aging(DSA) behavior was investigated in GH4169 alloy during tensile deforming with electric-pulse current(EPC) at 750 ℃.The results show that DSA is restrained in the alloy when deformed with 40 Hz-EPC.The size ofγ " phase inner grains increases obviously and δ phase is facilitated to precipitate on grain boundary in the alloy applied with EPC,due to the promotion effect of EPC on the diffusion and segregation of atoms.Transmission electron microscopy(TEM)results indicate that dislocations can cut through small γ" precipitate with the size of less than 10 nm,while dislocations can only bypass dislocations when γ " precipitate grow up over 20 nm.The growth of precipitates consumes large amounts of atoms as well as the velocity of dislocation increase,which makes dislocations difficult to be pinned.Therefore,when γ" precipitates grow up to a large size more than the critical size of dislocation pinning,DSA is significantly restrained in the alloy after necking deformed with EPC. 展开更多
关键词 GH4169 alloy Electric-pulse current dynamic strain aging MICROSTRUCTURE
原文传递
EFFECT OF DYNAMIC STRAIN AGING ON LOW CYCLE FATIGUE BEHAVIOUR OF 18-8 AUSTENITIC STAINLESS STEEL 被引量:2
5
作者 PENG Kaiping CHEN Wenzhe OIAN Kuangwu Fuzhou University,Fuzhou,China teaching assistant,Department of Mechanical Engineering,Fuzhou University,Fuzhou 350002,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第6期420-425,共6页
Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of ... Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of strain.±0.5 % to±1.5 %,the three processes of cyclic hardening,cyclic saturation and cyclic softening were observed.In the same amplitude of strain,the peak stress of the samples pre-treated by DSA is higher than that of solid-solu- tion and cold working pre-treatment,but no remarkable differences of the fatigue lives of them were found.TEM observation shows that the uniform and stable dislocation networks with high density form after DSA pre-treatment,which increases the cyclic peak stress.The cyclic softening results from the low dislocation density and elongated cell structure with low energy. 展开更多
关键词 18-8 austenitic stainless steel dynamic strain aging low cycle fatigue
在线阅读 下载PDF
A DISLOCATION-MECHANICS-BASED CONSTITUTIVE MODEL FOR DYNAMIC STRAIN AGING 被引量:1
6
作者 Guo Yangbo Tang Zhiping Cheng Jingyi 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期119-126,共8页
Dynamic strain aging (DSA) is an important phenomenon in solutehardened metals and seri- ously affects the mechanical properties ofmetals. DSA is generally induced by the interaction between themoving dislocations and... Dynamic strain aging (DSA) is an important phenomenon in solutehardened metals and seri- ously affects the mechanical properties ofmetals. DSA is generally induced by the interaction between themoving dislocations and the mobile solute atoms. In this paper, onlythe interaction between moving disloca- tions and mobile solute atomsin a dislocation core area (core atmosphere) will be taken intoaccount. To es- tablish the constitutive model which can describe theDSA phenomenon, we improved the Zerilli-Armstrongdislocation-mechanics-based thermal viscoplastic constitutiverelation, and added the effect of the interaction between the movingdislocations and core atmosphere. 展开更多
关键词 dynamic strain aging solute atoms core atmosphere TANTALUM
在线阅读 下载PDF
Strain Hardening Associated with Dislocation,Deformation Twinning,and Dynamic Strain Aging in Fe–20Mn–1.3C–(3Cu) TWIP Steels 被引量:2
7
作者 Lingyan Zhao Dingyi Zhu +2 位作者 Longlong Liu Zhenming Hu Mingjie Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第4期601-608,共8页
The effects of Cu on stacking fault energy,dislocation slip,mechanical twinning,and strain hardening in Fe–20Mn–1.3C twinning-induced plasticity(TWIP) steels were systematically investigated.The stacking fault ene... The effects of Cu on stacking fault energy,dislocation slip,mechanical twinning,and strain hardening in Fe–20Mn–1.3C twinning-induced plasticity(TWIP) steels were systematically investigated.The stacking fault energy was raised with an average slope of 2 mJ/m2 per 1 wt% Cu.The Fe–20Mn–1.3C–3Cu steel exhibited superior tensile properties,with the ultimate tensile strength reached at 2.27 GPa and elongation up to 96.9% owing to the high strain hardening that occurred.To examine the mechanism of this high strain hardening,dislocation density determination by XRD was calculated.The dislocation density increased with the increasing strain,and the addition of Cu resulted in a decrease in the dislocation density.A comparison of the strain-hardening behavior of Fe–20Mn–1.3C and Fe–20Mn–1.3C–3Cu TWIP steels was made in terms of modified Crussard–Jaoul(C–J) analysis and microstructural observations.Especially at low strains,the contributions of all the relevant deformation mechanisms—slip,twinning,and dynamic strain aging—were quantitatively evaluated.The analysis revealed that the dislocation storage was the leading factor to the increase of the strain hardening,while dynamic strain aging was a minor contributor to strain hardening.Twinning,which interacted with the matrix,acted as an effective barrier to dislocation motion. 展开更多
关键词 Twinning-induced plasticity(TWIP) strain hardening Mechanical twinning Dislocation density dynamic strain aging
原文传递
Verification of Interpretation of Dynamic Strain Aging for Intermediate Temperature Embrittlement in Ni-Bi Alloy
8
作者 Wu-qiang YANG Min XU +2 位作者 Ye MENG Lei ZHENG Xiao-dong MENG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第7期602-606,共5页
Intermediate temperature embritttement (ITE) is a general phenomenon in Ni alloys and recently was interpreted by dynamic strain aging (DSA). The relationship between ITE and DSA was studied by a binary Ni-Bi allo... Intermediate temperature embritttement (ITE) is a general phenomenon in Ni alloys and recently was interpreted by dynamic strain aging (DSA). The relationship between ITE and DSA was studied by a binary Ni-Bi alloy. The experimental alloy of well-controlled purity was produced by vacuum induction inching and then heat-treated properly. Tensile tests were performed at various tensile temperatures, and the elongation at fracture was used to indicate the ductility. In order to identify the mechanisms of fracture and ITE, fracture morphologies of the samples of low ductility were observed by scanning electron microscopy. According to the tensile ductility, Ni-Bi alloy shows an obvious embrittlement behavior in the intermediate temperature range (700--750℃ ). However, the stress strain curves of Ni-Bi alloy and the fracture morphologies indicate that DSA does not exist over the whole temperature range. Based on the experimental results and literatures, the interpretation of DSA was then discussed and proved to be invalid for elucidating the general feature of ITE in Ni-Bi alloy and Ni-based superalloys. 展开更多
关键词 intermediate temperature embrittlement Ni-Bi alloy dynamic strain aging stress-strain curve fracture morpbology
原文传递
Dynamic Strain Aging in a Newly Developed Ni-Co-Base Superalloy with Low Stacking Fault Energy
9
作者 Chenggang Tian Chuanyong Cui +2 位作者 Ling Xu Yuefeng Gu Xiaofeng Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第9期873-878,共6页
Characteristics of dynamic strain aging (DSA) in a Ni-Co-base superalloy were studied by tensile tests at temperatures ranging from 250 ℃ to 550 ℃ and strain rates ranging from 3 x 10-5 to 8 x 10-4 s-1. Serrated f... Characteristics of dynamic strain aging (DSA) in a Ni-Co-base superalloy were studied by tensile tests at temperatures ranging from 250 ℃ to 550 ℃ and strain rates ranging from 3 x 10-5 to 8 x 10-4 s-1. Serrated flow in the tensile stress-strain curves was observed in the temperature range from 300 ℃ to 500 ℃. Normal DSA behavior was found at temperatures ranging from 300 ℃ to 350 ℃, while inverse DSA behavior was observed at temperatures ranging from 400 ℃ to 500 ℃. The yield strength, ultimate tensile strength, elongation, work hardening index, and fracture features were not affected by temperature and strain rates in DSA regime. Negative strain-rate sensitivity of flow stress was observed in DSA regime. The analysis suggests that the ordering of the substitutional solutes around some defects like mobile dislocations and stacking faults due to the thermal activated process may cause the serrations on the tensile curves. 展开更多
关键词 Ni- Co base superalloy dynamic strain aging (DSA) Activation energy Substitutional solute Stacking fault
原文传递
DYNAMIC STRAIN AGING BEHAVIOR OF K40S ALLOY
10
作者 F.M. Yang, X.F. Sun, H.R. Guan and Z.Q. HuInstitute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第6期473-477,共5页
The dynamic strain aging behavior during tensile tests of K40S alloy has been investigated in the temperature range of 25-1100℃ with the strain rate range from 10-4 to 10-3s-1. The results show that four different ty... The dynamic strain aging behavior during tensile tests of K40S alloy has been investigated in the temperature range of 25-1100℃ with the strain rate range from 10-4 to 10-3s-1. The results show that four different types of serration, identified as A, B, C and E type serration were observed in the temperature range of 300-600℃. The strain exponents for onset of the serrated flow were calculated as 1.21, 2.19 and 1.61, and the activation energies as 121, 40 and 67kJ/mol for E, B and C type serration respectively. The main mechanism for dynamic strain aging discussed in light of the strain exponent and the activation energy. 展开更多
关键词 dynamic strain aging serrated flow strain exponent activation energy
在线阅读 下载PDF
EFFECT OF DYNAMIC STRAIN AGING ON PURE BENDING FATIGUE STRENGTH OF AUSTENITIC STAINLESS STEEL
11
作者 CHEN Wenzhe QIAN Kuangwu FuZhou University,Fuzhou,Fujian,China Lecturer,Dept.of Mechanical Engineering,Fuzhou University,Fuzhou,Fujian,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第5期359-363,共5页
The effect of various dynamic strain aging(DSA)pre-treatment processes on pure bending fatigue strength of an 18-8 austenitic stainless steel was investigated.The results show that DSA pre-treatment processes increase... The effect of various dynamic strain aging(DSA)pre-treatment processes on pure bending fatigue strength of an 18-8 austenitic stainless steel was investigated.The results show that DSA pre-treatment processes increase remarkably the fatigue strength and the strengthening effects increase with increasing pre-strain temperature and pre-strain.The fatigue limit of specimens pre-treated by DSA is 87% higher than that by solution treatment,and 20% high- er than that by cold-working.TEM observations show that the uniform and stable dislocation networks with high density formed after DSA pre-treatment,which suppress effectively the initiation and propugation of fatigue cracks and increase the fatigue strength of materials. 展开更多
关键词 dynamic strain aging(DSA) austenitic stainless steel fatigue strength
在线阅读 下载PDF
Effect of Dynamic Strain Aging on Hardness in the Heat-Affected Zone of SUS316 Steel Welds
12
作者 Lina Yu Kazutoshi Nishimoto Kazuyoshi Saida 《材料科学与工程(中英文A版)》 2023年第1期13-25,共13页
DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS3... DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS316 in the peak temperature range of 20-700°C,with strain rates varying from 4.2×10^(-3)to 4.2×10^(-5)s^(-1).Based on the appearance of discontinuous plastic flows,expressed as serrations,and the hardening phenomenon of the tensile samples,the conditions for the occurrence of DSA in the SUS316 steel were investigated.Furthermore,the extent of hardening due to DSA was evaluated by comparing the hardness values of the SUS316 and SUS316EHP steels after the tensile tests.To confirm the effect of DSA on hardness in the HAZ of the welded SUS316 steel,non-isothermal tensile tests of the simulated HAZ thermal cycles were performed using a Thermec Master.The relationship between the increase in Vickers hardness due to DSA and the strain in the HAZ was determined;the effect of DSA on hardness in the HAZ could be predicted.The DSA in SUS316 steel was found to be mainly attributed to the dynamic interaction of dislocations with C and N interstitial atoms during high-temperature deformation. 展开更多
关键词 dynamic strain aging HARDNESS SERRATION heat-affected zone SUS316
在线阅读 下载PDF
Dynamic and Static Aging Precipitation of β-Mg_(17)Al_(12) in the AZ80 Magnesium Alloy During Multi-directional Forging and Subsequent Aging 被引量:1
13
作者 Qing-Feng Zhu Gao-Song Wang +3 位作者 En-Ge Zhang Fan-Zheng Liu Zhi-Qiang Zhang Jian-Zhong Cui 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第10期941-948,共8页
Dynamic and static aging precipitation of Mg17Al12 phases in AZ80 magnesium alloy was studied by multidirectional forging(MDF) with decreasing temperatures from 410 to 300 ℃ and subsequent aging process. The result... Dynamic and static aging precipitation of Mg17Al12 phases in AZ80 magnesium alloy was studied by multidirectional forging(MDF) with decreasing temperatures from 410 to 300 ℃ and subsequent aging process. The results show that the morphology of the β-Mg17Al12 phases during forging process dynamically precipitates and aging process(statically precipitation) exhibited granular and laminar shapes, respectively. During the MDF, the inhomogeneous dynamic precipitation of the β-Mg17Al12 phases results in the uniformity on grain size, which is fine in the area with many granular Mg17Al12 phases but the grain is still coarse where there is no Mg17Al12 phases. During the aging process, the morphology of newly formed β-Mg17Al12 phases depends on the structural character of the forged sample. The newly precipitated β-Mg17Al12 phases are coarse laminar and needle-like shape in area with coarse grain. While, the fine newly precipitated β-Mg17Al12 phases are fine granular and needle-like in the area with fine grain. 展开更多
关键词 dynamic strain aging PRECIPITATION AZ80 magnesium alloy Multi-directional forging dynamic recrystallization
原文传递
Enhancing strength at elevated temperatures via dynamic high-density mobile dislocations in Mg alloys
14
作者 Mingyu Fan Ye Cui +13 位作者 Xin Zhou Junming Chen Yang Zhang Lixin Sun Jamieson Brechtl Daqing Fang Qian Li Qingqing Ding Hongbin Bei Peter K.Liaw Yanzhuo Xue Xun-Li Wang Yang Lu Zhongwu Zhang 《Journal of Magnesium and Alloys》 2025年第8期3768-3783,共16页
Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperat... Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation.Here,we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging(DSA).With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy,Ho atoms diffuse toward dislocations during deformation at elevated temperatures,provoking the DSA effect,which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms.The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures.The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials. 展开更多
关键词 Mg-Y-Zn alloy Ho addition High-density mobile dislocations dynamic strain aging(DSA) Elevated-temperature strength
在线阅读 下载PDF
Serrated flow accompanied with dynamic type transition of the Portevin-Le Chatelier effect in austenitic stainless steel
15
作者 Seung-Yong Lee Sita Chettri +3 位作者 Ritupan Sarmah Chikako Takushima Jun-ichi Hamada Nobuo Nakada 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第2期154-164,共11页
In order to further understand high-temperature deformation behavior and its-related mechanical prop-erties,the Portevin-Le Chatelier(PLC)effect in an Fe-19Cr-13Ni-0.2C austenitic stainless steel was in-vestigated usi... In order to further understand high-temperature deformation behavior and its-related mechanical prop-erties,the Portevin-Le Chatelier(PLC)effect in an Fe-19Cr-13Ni-0.2C austenitic stainless steel was in-vestigated using high-temperature digital image correlation(DIC)analysis.Under the tensile testing at temperatures from 473 to 623 K,different types of serrated flow appeared even at a constant applied strain rate,and the type transition took place dynamically in a certain order with deformation time.DIC analysis revealed that the dynamic type transition of the serrated flow obeys the PLC band propagation behavior,and that the transition of the PLC band propagation behavior could be attributed to the PLC band nucleation manner.Numerical modeling also proved that the nucleation manner of PLC band nu-cleation is determined by the spatial-temporal coupling effect. 展开更多
关键词 dynamic strain aging(DSA) Austenitic stainless steel(γ-STS) Portevin-Le Chatelier(PLC)effect Digital image correlation(DIC) Local strain distribution
原文传递
Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature 被引量:1
16
作者 Mattias Calmunger Guocai Chai +1 位作者 Sten Johansson Johan Moverare 《Theoretical & Applied Mechanics Letters》 CAS 2014年第4期20-25,共6页
In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stai... In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromech- anisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650℃. 展开更多
关键词 dynamic strain ageing slow strain rate tensile testing FRACTURE DAMAGE
在线阅读 下载PDF
Development of constitutive models and hot-working processing map for Al–12Ce–0.4Sc alloys
17
作者 Mohan Raj Athimulam Jinu Paul +1 位作者 Srinu Gangolu S.M.Jagadeesh Babu 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1655-1668,共14页
The current study investigates the hot deformation behavior of Al-12Ce-0.4Sc alloy with an isothermal hot compression test at300-450°C/0.001-1s^(-1).Results show that the flow curves exhibit typical dynamic recov... The current study investigates the hot deformation behavior of Al-12Ce-0.4Sc alloy with an isothermal hot compression test at300-450°C/0.001-1s^(-1).Results show that the flow curves exhibit typical dynamic recovery(DRV)and slight flow-softening behavior.Additionally,the flow curves overlap owing to the dynamic strain aging(DSA)phenomenon at 400-450°C/0.01-0.1 s^(-1).Two different constitutive models were developed using the experimental data for hot deformation:(i)strain-compensated Arrhenius model(Method I)and(ii)logistic regression model(MethodⅡ).The average stress exponent(n)and apparent activation energy(Q)are 14.25 and 209.58 k J·mol^(-1),respectively.The hot-working processing map shows that the optimal processing condition is 400°C/1 s^(-1),and the maximum power dissipation efficiency is 22%.Stable and unstable domains indicated by the processing map were correlated using scanning electron microscopy(SEM),transmission electron microscopy(TEM),and electron backscatter diffraction(EBSD)characterization techniques.The unstable domains are primarily associated with pro-eutectic Al11Ce3intermetallic fracture and interfacial cracks betweenα-Al and pro-eutectic Al_(11)Ce_(3). 展开更多
关键词 hot-working processing map constitutive analysis dynamic strain aging Al-12Ce-0.4Sc alloy
在线阅读 下载PDF
Strain rate effects on mechanical properties,microstructural evolution,and deformation mechanisms of high manganese steels
18
作者 Dong Liu Dapeng Yang +3 位作者 Yong Hou Yunjie Li Guodong Wang Hongliang Yi 《Journal of Materials Science & Technology》 2025年第34期219-255,共37页
High manganese steels(HMS),known for their exceptional strength-ductility balance,are increasingly utilized in dynamic loading applications.This review examines the effects of strain rate on their mechanical propertie... High manganese steels(HMS),known for their exceptional strength-ductility balance,are increasingly utilized in dynamic loading applications.This review examines the effects of strain rate on their mechanical properties and microstructural evolution,focusing on strain rate hardening,adiabatic heating softening,and dynamic strain aging(DSA).The influence of strain rate on yield strength,ultimate tensile strength,strain hardening,and ductility is discussed,highlighting both positive and negative sensitivities across different alloy compositions and strain rate regimes.The strain rate response of various deformation mechanisms,including deformation twinning,dislocation slip,and phase transformation,is examined alongside their influence on microstructural evolution,alloy design,and industrial applications.The intricate role of DSA is also analyzed,emphasizing its contribution to strain rate sensitivity.To optimize HMS for dynamic environments,future research should focus on advanced modeling and processing techniques,in-situ characterization methods,and a deeper understanding of thermally activated processes and stacking fault energy-controlled mechanisms.This review provides insights into strain rate effects,guiding alloy design,and technological advancements of the new HMS. 展开更多
关键词 High manganese steels strain rate sensitivity Yield strength strain hardening Deformation mechanisms Microstructural evolution dynamic strain aging
原文传递
Study on the Deformation Behavior of Mg-3.6%Er Magnesium Alloy 被引量:5
19
作者 王忠军 贾维平 崔建忠 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第6期744-748,共5页
The deformation behaviour of a casting Mg-3.6% Er magnesium alloy after T6 treatment was studied in tensile tests from room temperature to 450 ℃ under different strain rates ranging from 1.0 ×10^-4 to 6.0 ×... The deformation behaviour of a casting Mg-3.6% Er magnesium alloy after T6 treatment was studied in tensile tests from room temperature to 450 ℃ under different strain rates ranging from 1.0 ×10^-4 to 6.0 × 10^-3 S^-1 Obtained local plateau in the temperature dependence of the ultimate strength (σb) and yield strength (σ0.2) under constant strain rate indicated the presence of dynamic strain ageing (DSA). Serrated flow was observed at the temperature of 200, 250, and 300 ℃. The observed negative strain rate sensitivity suggested that the serrated flow behavior arose from DSA. The temperature and strain rate dependence of the critical strain for the onset of serrated flow was analyzed using a phenomenological DSA equation, and the apparent activation energy Q for the serrated flow was obtained by calculation. 展开更多
关键词 Mg-3.6% Er alloy deformation behavior serrated flow dynamic strain aging rare earths
在线阅读 下载PDF
Investigation of Portevin–Le Chatelier effect in rolled α-phase Mg-Li alloy during tensile and compressive deformation 被引量:5
20
作者 Xiaoqiang Li Chunlong Cheng +7 位作者 Qichi Le Lei Bao Peipeng Jin Ping Wang Liang Ren Hang Wang Xiong Zhou Chenglu Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第17期152-161,共10页
Avoiding the Portevin-Le Chatelier(PLC)effect is very important concern for wrought Mg-Li alloys.In this study,the special PLC effect was found in rolled Mg-5Li-3Al-2Zn(LAZ532)alloy during tensile and compressive defo... Avoiding the Portevin-Le Chatelier(PLC)effect is very important concern for wrought Mg-Li alloys.In this study,the special PLC effect was found in rolled Mg-5Li-3Al-2Zn(LAZ532)alloy during tensile and compressive deformation.By observing microstructure evolution of the alloy during tensile and compressive deformation,it was found that prismaticand pyramidalslips were activated during tensile deformation,resulting in plenty of dislocation accumulation.In the deformation process after compressive yielding,the deformations in coarse grains and fine grains were dominated by{1012}extension twinning and grain boundary slip,respectively.Based on experimental result analysis,the sudden appearance of PLC effect in the later stage of axial tensile deformation(along rolled direction)was caused by interaction between solute atoms and dislocations.In the process of axial compressive deformation(along rolled direction),PLC effect presented the complex and changeable phenomenon of appeared-disappeared-appeared,which was mainly caused by the continuous nucleation of twin in the material,the activation of grain boundary slip and the shear deformation of twin,respectively. 展开更多
关键词 Mg-Li alloy Portevin-Le Chatelier effect dynamic strain aging TWINS
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部