Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we pr...Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.展开更多
In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others...In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.展开更多
Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disruptin...Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.展开更多
Metabolic dysfunction-associated steatotic liver disease,characterized by pathological intracellular triglyceride(TG)accumulation,is mechanistically associated with the disrupted spatiotemporal regulation of hepatocyt...Metabolic dysfunction-associated steatotic liver disease,characterized by pathological intracellular triglyceride(TG)accumulation,is mechanistically associated with the disrupted spatiotemporal regulation of hepatocyte nuclear factor(HNF)-dependent transcriptional programs.HNFs,including key members such as HNF-1α,HNF-4α,and HNF-6,constitute a liver-enriched family of transcription factors that govern hepatic lipid metabolism through hierarchical transcriptional regulatory networks.These networks critically regulate the dynamic equilibrium of TG metabolism,encompassing TG synthesis,storage,lipolysis,and lipoprotein-mediated export.This review comprehensively deciphers the molecular cascades through which HNF dysfunction exacerbates TG metabolic disorder in metabolic dysfunction-associated steatotic liver disease.Additionally,we evaluate emerging translational strategies targeting key HNF regulatory nodes and discuss current clinical challenges as well as potential solutions.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve thro...Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Alt...Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Although these conditions differ in clinical presentation, they share fundamental pathological features that may stem from abnormal mitochondrial dynamics and impaired autophagic clearance, which contribute to redox imbalance and oxidative stress in neurons. This review aimed to elucidate the relationship between mitochondrial dynamics dysfunction and neurodevelopmental disorders. Mitochondria are highly dynamic organelles that undergo continuous fusion and fission to meet the substantial energy demands of neural cells. Dysregulation of these processes, as observed in certain neurodevelopmental disorders, causes accumulation of damaged mitochondria, exacerbating oxidative damage and impairing neuronal function. The phosphatase and tensin homolog-induced putative kinase 1/E3 ubiquitin-protein ligase pathway is crucial for mitophagy, the process of selectively removing malfunctioning mitochondria. Mutations in genes encoding mitochondrial fusion proteins have been identified in autism spectrum disorders, linking disruptions in the fusion-fission equilibrium to neurodevelopmental impairments. Additionally, animal models of Rett syndrome have shown pronounced defects in mitophagy, reinforcing the notion that mitochondrial quality control is indispensable for neuronal health. Clinical studies have highlighted the importance of mitochondrial disturbances in neurodevelopmental disorders. In autism spectrum disorders, elevated oxidative stress markers and mitochondrial DNA deletions indicate compromised mitochondrial function. Attention-deficit/hyperactivity disorder has also been associated with cognitive deficits linked to mitochondrial dysfunction and oxidative stress. Moreover, induced pluripotent stem cell models derived from patients with Rett syndrome have shown impaired mitochondrial dynamics and heightened vulnerability to oxidative injury, suggesting the role of defective mitochondrial homeostasis in these disorders. From a translational standpoint, multiple therapeutic approaches targeting mitochondrial pathways show promise. Interventions aimed at preserving normal fusion-fission cycles or enhancing mitophagy can reduce oxidative damage by limiting the accumulation of defective mitochondria. Pharmacological modulation of mitochondrial permeability and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, an essential regulator of mitochondrial biogenesis, may also ameliorate cellular energy deficits. Identifying early biomarkers of mitochondrial impairment is crucial for precision medicine, since it can help clinicians tailor interventions to individual patient profiles and improve prognoses. Furthermore, integrating mitochondria-focused strategies with established therapies, such as antioxidants or behavioral interventions, may enhance treatment efficacy and yield better clinical outcomes. Leveraging these pathways could open avenues for regenerative strategies, given the influence of mitochondria on neuronal repair and plasticity. In conclusion, this review indicates mitochondrial homeostasis as a unifying therapeutic axis within neurodevelopmental pathophysiology. Disruptions in mitochondrial dynamics and autophagic clearance converge on oxidative stress, and researchers should prioritize validating these interventions in clinical settings to advance precision medicine and enhance outcomes for individuals affected by neurodevelopmental disorders.展开更多
The aim of this work is to develop an improved region based active contour and dynamic programming based method for accurate segmentation of left ventricle (LV) from multi-slice cine short axis cardiac magnetic reso...The aim of this work is to develop an improved region based active contour and dynamic programming based method for accurate segmentation of left ventricle (LV) from multi-slice cine short axis cardiac magnetic resonance (MR) images. Intensity inhomogeneity and weak object boundaries present in MR images hinder the segmentation accuracy. The proposed active contour model driven by a local Gaussian distribution fitting (LGDF) energy and an auxiliary global intensity fitting energy improves the accuracy of endocardial boundary detection. The weightage of the global energy fitting term is dynamically adjusted using a spatially varying weight function. Dynamic programming scheme proposed for the segmentation of epicardium considers the myocardium probability map and a distance weighted edge map in the cost matrix. Radial distance weighted technique and conical geometry are employed for segmenting the basal slices with left ventricle outflow tract (LVOT) and most apical slices. The proposed method is validated on a public dataset comprising 45 subjects from medical image computing and computer assisted interventions (MICCAI) 2009 segmentation challenge. The average percentage of good endocardial and epicardial contours detected is about 99%, average perpendicular distance of the detected good contours from the manual reference contours is 1.95 mm, and the dice similarity coefficient between the detected contours and the reference contours is 0.91. Correlation coefficient and the coefficient of determination between the ejection fraction measurements from manual segmentation and the automated method are respectively 0.9781 and 0.9567, for LV mass these values are 0.9249 and 0.8554. Statistical analysis of the results reveals a good agreement between the clinical parameters determined manually and those estimated using the automated method.展开更多
Replicas can improve the data reliability in distributed system. However, the traditional algorithms for replica management are based on the assumption that all replicas have the uniform reliability, which is inaccura...Replicas can improve the data reliability in distributed system. However, the traditional algorithms for replica management are based on the assumption that all replicas have the uniform reliability, which is inaccurate in some actual systems. To address such problem, a novel algorithm is proposed based on dynamic programming to manage the number and distribution of replicas in different nodes. By using Markov model, replicas management is organized as a multi-phase process, and the recursion equations are provided. In this algorithm, the heterogeneity of nodes, the expense for maintaining replicas and the engaged space have been considered. Under these restricted conditions, this algorithm realizes high data reliability in a distributed system. The results of case analysis prove the feasibility of the algorithm.展开更多
Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems a...Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems are encountered in optimization models involving economies of scale. In this paper, a new hybrid dynamic programming method was proposed for solving concave resource allocation problems. A convex underestimating function was used to approximate the objective function and the resulting convex subproblem was solved with dynamic programming technique after transforming it into a 0-1 linear knapsack problem. To ensure the convergence, monotonicity and domain cut technique was employed to remove certain integer boxes and partition the revised domain into a union of integer boxes. Computational results were given to show the efficiency of the algorithm.展开更多
From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are ...From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.展开更多
This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is int...This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.展开更多
The residential energy scheduling of solar energy is an important research area of smart grid. On the demand side, factors such as household loads, storage batteries, the outside public utility grid and renewable ener...The residential energy scheduling of solar energy is an important research area of smart grid. On the demand side, factors such as household loads, storage batteries, the outside public utility grid and renewable energy resources, are combined together as a nonlinear, time-varying, indefinite and complex system, which is difficult to manage or optimize. Many nations have already applied the residential real-time pricing to balance the burden on their grid. In order to enhance electricity efficiency of the residential micro grid, this paper presents an action dependent heuristic dynamic programming(ADHDP) method to solve the residential energy scheduling problem. The highlights of this paper are listed below. First,the weather-type classification is adopted to establish three types of programming models based on the features of the solar energy. In addition, the priorities of different energy resources are set to reduce the loss of electrical energy transmissions.Second, three ADHDP-based neural networks, which can update themselves during applications, are designed to manage the flows of electricity. Third, simulation results show that the proposed scheduling method has effectively reduced the total electricity cost and improved load balancing process. The comparison with the particle swarm optimization algorithm further proves that the present method has a promising effect on energy management to save cost.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is propos...In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is proposed by designing a synchronization-error-driven triggering condition,which brings together the consensus control with Adaptive Dynamic Programming(ADP)technique.Then,the developed event-triggered distributed control law can be employed by finding an approximate solution of event-triggered coupled Hamilton-Jacobi-Bellman(HJB)equation.To address this issue,the critic network architecture is constructed,in which an adaptive weight updating law is designed for estimating the cooperative optimal cost function online.Therefore,the event-triggered closed-loop system is decomposed into two subsystems:the system with flow dynamics and the system with jump dynamics.By using Lyapunov method,the stability of this closed-loop system is guaranteed and all signals are ensured to be Uniformly Ultimately Bounded(UUB).Furthermore,the Zeno behavior is avoided.Simulation results are finally provided to demonstrate the effectiveness of the proposed method.展开更多
Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of service...Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of services in the controllable distributed information system are analyzed as the preparatory work.Using the idea of service composition as a reference,the approach translates the recovery decision-making into a planning problem regarding artificial intelligence (AI) through two steps.The first is the self-organization based on a logical view of the network,and the second is the definition of evaluation standards.Applying Bellman dynamic programming to solve the planning problem,the approach offers timely emergency response and optimal recovery source selection,meeting multiple QoS (quality of service)requirements.Experimental results demonstrate the rationality and optimality of the approach,and the theoretical analysis of its computational complexity and the comparison with conventional methods exhibit its high efficiency.展开更多
Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicabi...Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.展开更多
This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain e...This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.展开更多
基金supported in part by the National Key Research and Development Program of China(2024YFB4709100,2021YFE0206100)the National Natural Science Foundation of China(62073321)+1 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029)the Science and Technology Development Fund,Macao SAR,China(0015/2020/AMJ)
文摘Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.
基金supported by the Aeronautical Science Foundation of China(20220001057001)an Open Project of the National Key Laboratory of Air-based Information Perception and Fusion(202437)
文摘In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.
基金financially supported by Ministerio de Ciencia e Innovación projects SAF2017-82736-C2-1-R to MTMFin Universidad Autónoma de Madrid and by Fundación Universidad Francisco de Vitoria to JS+2 种基金a predoctoral scholarship from Fundación Universidad Francisco de Vitoriafinancial support from a 6-month contract from Universidad Autónoma de Madrida 3-month contract from the School of Medicine of Universidad Francisco de Vitoria。
文摘Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.
基金Supported by the Science and Technology Planning Projects of Guizhou Province,No.QKHJC-MS[2025]384the Science and Technology Planning Projects of Zunyi City,No.ZSKHHZ(2023)470+3 种基金the WBE Liver Fibrosis Foundation,No.CFHPC2025028Chinese Foundation for Hepatitis Prevention and Control Muxin Research Fund of Chronic Hepatitis B,No.MX202404Beijing Liver and Gallbladder Mutual Aid Public Welfare Foundation Artificial Liver Special Fund,No.iGandanF-1082024-RGG018the Student Innovation and Entrepreneurship Training Program of Zunyi Medical University,No.2024106610923.
文摘Metabolic dysfunction-associated steatotic liver disease,characterized by pathological intracellular triglyceride(TG)accumulation,is mechanistically associated with the disrupted spatiotemporal regulation of hepatocyte nuclear factor(HNF)-dependent transcriptional programs.HNFs,including key members such as HNF-1α,HNF-4α,and HNF-6,constitute a liver-enriched family of transcription factors that govern hepatic lipid metabolism through hierarchical transcriptional regulatory networks.These networks critically regulate the dynamic equilibrium of TG metabolism,encompassing TG synthesis,storage,lipolysis,and lipoprotein-mediated export.This review comprehensively deciphers the molecular cascades through which HNF dysfunction exacerbates TG metabolic disorder in metabolic dysfunction-associated steatotic liver disease.Additionally,we evaluate emerging translational strategies targeting key HNF regulatory nodes and discuss current clinical challenges as well as potential solutions.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
基金Supported by Chongqing Health Commission and Chongqing Science and Technology Bureau,No.2023MSXM182。
文摘Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
文摘Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Although these conditions differ in clinical presentation, they share fundamental pathological features that may stem from abnormal mitochondrial dynamics and impaired autophagic clearance, which contribute to redox imbalance and oxidative stress in neurons. This review aimed to elucidate the relationship between mitochondrial dynamics dysfunction and neurodevelopmental disorders. Mitochondria are highly dynamic organelles that undergo continuous fusion and fission to meet the substantial energy demands of neural cells. Dysregulation of these processes, as observed in certain neurodevelopmental disorders, causes accumulation of damaged mitochondria, exacerbating oxidative damage and impairing neuronal function. The phosphatase and tensin homolog-induced putative kinase 1/E3 ubiquitin-protein ligase pathway is crucial for mitophagy, the process of selectively removing malfunctioning mitochondria. Mutations in genes encoding mitochondrial fusion proteins have been identified in autism spectrum disorders, linking disruptions in the fusion-fission equilibrium to neurodevelopmental impairments. Additionally, animal models of Rett syndrome have shown pronounced defects in mitophagy, reinforcing the notion that mitochondrial quality control is indispensable for neuronal health. Clinical studies have highlighted the importance of mitochondrial disturbances in neurodevelopmental disorders. In autism spectrum disorders, elevated oxidative stress markers and mitochondrial DNA deletions indicate compromised mitochondrial function. Attention-deficit/hyperactivity disorder has also been associated with cognitive deficits linked to mitochondrial dysfunction and oxidative stress. Moreover, induced pluripotent stem cell models derived from patients with Rett syndrome have shown impaired mitochondrial dynamics and heightened vulnerability to oxidative injury, suggesting the role of defective mitochondrial homeostasis in these disorders. From a translational standpoint, multiple therapeutic approaches targeting mitochondrial pathways show promise. Interventions aimed at preserving normal fusion-fission cycles or enhancing mitophagy can reduce oxidative damage by limiting the accumulation of defective mitochondria. Pharmacological modulation of mitochondrial permeability and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, an essential regulator of mitochondrial biogenesis, may also ameliorate cellular energy deficits. Identifying early biomarkers of mitochondrial impairment is crucial for precision medicine, since it can help clinicians tailor interventions to individual patient profiles and improve prognoses. Furthermore, integrating mitochondria-focused strategies with established therapies, such as antioxidants or behavioral interventions, may enhance treatment efficacy and yield better clinical outcomes. Leveraging these pathways could open avenues for regenerative strategies, given the influence of mitochondria on neuronal repair and plasticity. In conclusion, this review indicates mitochondrial homeostasis as a unifying therapeutic axis within neurodevelopmental pathophysiology. Disruptions in mitochondrial dynamics and autophagic clearance converge on oxidative stress, and researchers should prioritize validating these interventions in clinical settings to advance precision medicine and enhance outcomes for individuals affected by neurodevelopmental disorders.
基金supported by Department of Science and Technology, Ministry of Science and Technology, India (No. DST/TSG/ICT/2010/08)
文摘The aim of this work is to develop an improved region based active contour and dynamic programming based method for accurate segmentation of left ventricle (LV) from multi-slice cine short axis cardiac magnetic resonance (MR) images. Intensity inhomogeneity and weak object boundaries present in MR images hinder the segmentation accuracy. The proposed active contour model driven by a local Gaussian distribution fitting (LGDF) energy and an auxiliary global intensity fitting energy improves the accuracy of endocardial boundary detection. The weightage of the global energy fitting term is dynamically adjusted using a spatially varying weight function. Dynamic programming scheme proposed for the segmentation of epicardium considers the myocardium probability map and a distance weighted edge map in the cost matrix. Radial distance weighted technique and conical geometry are employed for segmenting the basal slices with left ventricle outflow tract (LVOT) and most apical slices. The proposed method is validated on a public dataset comprising 45 subjects from medical image computing and computer assisted interventions (MICCAI) 2009 segmentation challenge. The average percentage of good endocardial and epicardial contours detected is about 99%, average perpendicular distance of the detected good contours from the manual reference contours is 1.95 mm, and the dice similarity coefficient between the detected contours and the reference contours is 0.91. Correlation coefficient and the coefficient of determination between the ejection fraction measurements from manual segmentation and the automated method are respectively 0.9781 and 0.9567, for LV mass these values are 0.9249 and 0.8554. Statistical analysis of the results reveals a good agreement between the clinical parameters determined manually and those estimated using the automated method.
文摘Replicas can improve the data reliability in distributed system. However, the traditional algorithms for replica management are based on the assumption that all replicas have the uniform reliability, which is inaccurate in some actual systems. To address such problem, a novel algorithm is proposed based on dynamic programming to manage the number and distribution of replicas in different nodes. By using Markov model, replicas management is organized as a multi-phase process, and the recursion equations are provided. In this algorithm, the heterogeneity of nodes, the expense for maintaining replicas and the engaged space have been considered. Under these restricted conditions, this algorithm realizes high data reliability in a distributed system. The results of case analysis prove the feasibility of the algorithm.
基金Project supported by the National Natural Science Foundation oChina (Grant os.79970107 and 10271073)
文摘Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems are encountered in optimization models involving economies of scale. In this paper, a new hybrid dynamic programming method was proposed for solving concave resource allocation problems. A convex underestimating function was used to approximate the objective function and the resulting convex subproblem was solved with dynamic programming technique after transforming it into a 0-1 linear knapsack problem. To ensure the convergence, monotonicity and domain cut technique was employed to remove certain integer boxes and partition the revised domain into a union of integer boxes. Computational results were given to show the efficiency of the algorithm.
基金The National Science Fund for Distinguished Young Scholars (No.60425206)the National Natural Science Foundation of China (No.60633010)the Natural Science Foundation of Jiangsu Province(No.BK2006094)
文摘From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.
基金supported in part by the National Key Reseanch and Development Program of China(2018AAA0101502,2018YFB1702300)in part by the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)in part by the Intel Collaborative Research Institute for Intelligent and Automated Connected Vehicles。
文摘This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.
基金supported in part by the National Natural Science Foundation of China(61533017,U1501251,61374105,61722312)
文摘The residential energy scheduling of solar energy is an important research area of smart grid. On the demand side, factors such as household loads, storage batteries, the outside public utility grid and renewable energy resources, are combined together as a nonlinear, time-varying, indefinite and complex system, which is difficult to manage or optimize. Many nations have already applied the residential real-time pricing to balance the burden on their grid. In order to enhance electricity efficiency of the residential micro grid, this paper presents an action dependent heuristic dynamic programming(ADHDP) method to solve the residential energy scheduling problem. The highlights of this paper are listed below. First,the weather-type classification is adopted to establish three types of programming models based on the features of the solar energy. In addition, the priorities of different energy resources are set to reduce the loss of electrical energy transmissions.Second, three ADHDP-based neural networks, which can update themselves during applications, are designed to manage the flows of electricity. Third, simulation results show that the proposed scheduling method has effectively reduced the total electricity cost and improved load balancing process. The comparison with the particle swarm optimization algorithm further proves that the present method has a promising effect on energy management to save cost.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金co-supported by the National Natural Science Foundation of China(No.62003036)China Postdoctoral Science Foundation(No.2019TQ0037)。
文摘In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is proposed by designing a synchronization-error-driven triggering condition,which brings together the consensus control with Adaptive Dynamic Programming(ADP)technique.Then,the developed event-triggered distributed control law can be employed by finding an approximate solution of event-triggered coupled Hamilton-Jacobi-Bellman(HJB)equation.To address this issue,the critic network architecture is constructed,in which an adaptive weight updating law is designed for estimating the cooperative optimal cost function online.Therefore,the event-triggered closed-loop system is decomposed into two subsystems:the system with flow dynamics and the system with jump dynamics.By using Lyapunov method,the stability of this closed-loop system is guaranteed and all signals are ensured to be Uniformly Ultimately Bounded(UUB).Furthermore,the Zeno behavior is avoided.Simulation results are finally provided to demonstrate the effectiveness of the proposed method.
文摘Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of services in the controllable distributed information system are analyzed as the preparatory work.Using the idea of service composition as a reference,the approach translates the recovery decision-making into a planning problem regarding artificial intelligence (AI) through two steps.The first is the self-organization based on a logical view of the network,and the second is the definition of evaluation standards.Applying Bellman dynamic programming to solve the planning problem,the approach offers timely emergency response and optimal recovery source selection,meeting multiple QoS (quality of service)requirements.Experimental results demonstrate the rationality and optimality of the approach,and the theoretical analysis of its computational complexity and the comparison with conventional methods exhibit its high efficiency.
基金supported by the National Natural Science Foundation of China(91648204 61601486)+1 种基金State Key Laboratory of High Performance Computing Project Fund(1502-02)Research Programs of National University of Defense Technology(ZDYYJCYJ140601)
文摘Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.
基金supported by the National Natural Science Foundation of China(6157328561305133)
文摘This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.