期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
EARLY CATARACT DETECTION BY DYNAMIC LIGHT SCATTERING WITH SPARSE BAYESIAN LEARNING
1
作者 SU-LONG NYEO RAFAT R.ANSAR 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2009年第3期303-313,共11页
Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reco... Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reconstructing the most-probable size distribution ofα-crystallin and their aggregates in an ocular lens from the DLS data.The performance of the algorithm is evaluated by analyzing simulated correlation data from known distributions and DLS data from the ocular lenses of a fetal calf,a Rhesus monkey,and a man,so as to establish the required efficiency of the SBL algorithm for clinical studies. 展开更多
关键词 CATARACT dynamic light scattering diagnostic algorithm sparse bayesian learning(SBL).
原文传递
DLSBL-OTFS:动态先验型SBL的OTFS信道估计方法
2
作者 郑娟毅 魏甜 《计算机应用研究》 北大核心 2026年第1期227-233,共7页
针对正交时频空间(OTFS)系统中传统稀疏贝叶斯学习(SBL)信道估计算法因依赖固定先验导致收敛缓慢,以及现有深度学习方法泛化能力不足的问题,提出了一种基于动态先验型的稀疏贝叶斯学习(DLSBL)信道估计方法。该方法首先利用长短期记忆(LS... 针对正交时频空间(OTFS)系统中传统稀疏贝叶斯学习(SBL)信道估计算法因依赖固定先验导致收敛缓慢,以及现有深度学习方法泛化能力不足的问题,提出了一种基于动态先验型的稀疏贝叶斯学习(DLSBL)信道估计方法。该方法首先利用长短期记忆(LSTM)网络学习并预测信道在延迟-多普勒(DD)域的动态时变统计特性,生成精确的、时变的稀疏先验信息。然后,将该动态先验信息作为SBL的初始化条件进行信道估计,解决了传统SBL在时变信道中参数选择的难题,并有效抑制了分数多普勒干扰和噪声。仿真结果表明,该方法相比传统算法,在误码率和归一化均方误差等性能上均有显著提升,尤其在低信噪比和高移动性场景下展现出更强的鲁棒性,为高移动性无线通信系统提供了更高效、精准的信道估计方案。 展开更多
关键词 正交时频空间 dlsbl 稀疏贝叶斯学习 长短期记忆网络
在线阅读 下载PDF
基于多关联向量机的动态软测量建模 被引量:4
3
作者 李川 王时龙 张贤明 《系统仿真学报》 CAS CSCD 北大核心 2009年第12期3513-3517,共5页
为了估计工业过程中的质量参数,考虑到实际过程中的动态特性,提出一种基于多关联向量机的动态软测量建模方法。对于动态过渡周期内的二次变量数据,根据不同采样时刻划分为多个计算子空间,在每一子空间内采用关联向量机来建立不同时刻的... 为了估计工业过程中的质量参数,考虑到实际过程中的动态特性,提出一种基于多关联向量机的动态软测量建模方法。对于动态过渡周期内的二次变量数据,根据不同采样时刻划分为多个计算子空间,在每一子空间内采用关联向量机来建立不同时刻的二次变量对主导变量的影响模型。各个子模型的输出采用一个综合关联向量机进行连接,从而建立了基于过渡周期内不同二次变量采样数据的主导变量动态软测量模型。通过实例仿真,结果验证了所提出方法的有效性。 展开更多
关键词 动态软测量 关联向量机 建模 稀疏贝叶斯学习 综合
原文传递
多风电场短期输出功率的联合概率密度预测方法 被引量:9
4
作者 朱思萌 杨明 +1 位作者 韩学山 李建祥 《电力系统自动化》 EI CSCD 北大核心 2014年第19期8-15,共8页
提出一种多风电场短期输出功率的联合概率密度预测方法。首先利用支持向量机对每座风电场的输出功率进行单点值预测,对预测误差建立稀疏贝叶斯学习模型进行误差的概率密度预测,得到单一风电场输出功率的边际概率密度函数预测结果;对多... 提出一种多风电场短期输出功率的联合概率密度预测方法。首先利用支持向量机对每座风电场的输出功率进行单点值预测,对预测误差建立稀疏贝叶斯学习模型进行误差的概率密度预测,得到单一风电场输出功率的边际概率密度函数预测结果;对多风场输出功率预测误差特性进行统计分析,发现同一区域内,风电场输出功率预测误差之间存在线性时空关联特性,进而运用动态条件相关回归模型求得相关系数矩阵,定量描述多风电场短期输出功率预测误差之间的动态时空相关关系;最后,综合单一风电场输出功率边际概率密度预测结果和相关系数矩阵得到多风电场输出功率的联合概率密度函数,并借助多元随机变量抽样技术形成包含动态时空关联特性的多维场景。通过实例分析,表明了所提出方法的有效性。 展开更多
关键词 短期风电功率预测 联合概率密度预测 支持向量机 稀疏贝叶斯学习 动态条件相关回归模型 电力系统
在线阅读 下载PDF
一种联合SBL和DTW的叠前道集剩余时差校正方法 被引量:1
5
作者 石战战 夏艳晴 +1 位作者 周怀来 王元君 《岩性油气藏》 CSCD 北大核心 2019年第3期86-94,共9页
基于动态时间规整的叠前道集剩余时差校正方法存在动态时间规整算法对噪声敏感,准确计算规整路径困难;算法采用逐点搬家法,直接对地震道作剩余时差校正容易引起地震波形畸变的问题。提出一种联合稀疏贝叶斯学习(Sparse Bayesian Learnin... 基于动态时间规整的叠前道集剩余时差校正方法存在动态时间规整算法对噪声敏感,准确计算规整路径困难;算法采用逐点搬家法,直接对地震道作剩余时差校正容易引起地震波形畸变的问题。提出一种联合稀疏贝叶斯学习(Sparse Bayesian Learning,SBL)和动态时间规整(Dynamic Time Warping,DTW)的叠前道集剩余时差校正方法,采用SBL对地震道集进行稀疏表示,再利用DTW对稀疏表示结果进行剩余时差校正,处理后重构地震记录。结果表明,SBL具有良好的噪声鲁棒性,较少的局部最小值,以及全局最优解同时也是最稀疏解,稀疏分解后得到地下地层单位冲击响应,消除了子波影响,再进行时差校正就能避免波形畸变,同时实现了高保真剩余时差校正和随机噪声压制。数值模拟和实际资料处理结果表明该方法具有良好的应用效果。 展开更多
关键词 叠前道集 剩余时差 稀疏表示 稀疏贝叶斯学习 动态时间规整
在线阅读 下载PDF
基于自组合核的增量分类方法
6
作者 冯林 张晶 吴振宇 《系统工程与电子技术》 EI CSCD 北大核心 2016年第8期1958-1968,共11页
在线极端学习机(online sequential extreme learning machine,OSELM)模型在解决动态数据实时分类问题时,无需批量计算,仅保留前一时刻训练模型,根据当前时刻样本调整原有模型即可。然而,该增量方法在离线训练阶段随机指定隐层神经元使... 在线极端学习机(online sequential extreme learning machine,OSELM)模型在解决动态数据实时分类问题时,无需批量计算,仅保留前一时刻训练模型,根据当前时刻样本调整原有模型即可。然而,该增量方法在离线训练阶段随机指定隐层神经元使模型鲁棒性差,且求解过程难以拓展于核方法,降低了分类效果。针对上述问题,提出一种基于自组合核的在线极端学习机(self-compounding kernel online sequential extreme learning machine,SCK-OSELM)模型。首先,提出一种新的自组合核(self-compounding kernel,SCK)方法,构建样本不同核空间的非线性特征组合,该方法可被应用于其他监督核方法中。其次,以稀疏贝叶斯为理论基础将训练数据的先验分布作为模型权值引入,并利用超参调整权值后验分布,从而达到对当前时间点参数稀疏的目的。最后,将稀疏得到的参数并入下一时刻运算。对动态数据的实时分类实验表明,该方法是一种有效的增量学习算法。相比于OSELM,该方法在解决动态数据实时分类问题时获得更稳定、准确的分类效果。 展开更多
关键词 动态数据 在线极端学习机 自组合核 稀疏贝叶斯
在线阅读 下载PDF
基于稀疏贝叶斯学习的时域流信号鲁棒动态压缩感知算法 被引量:5
7
作者 董道广 芮国胜 +2 位作者 田文飚 张洋 张海波 《电子学报》 EI CAS CSCD 北大核心 2020年第5期990-996,共7页
块效应和未知且时变的噪声强度会降低时域流信号动态稀疏重构的性能,为解决该问题,本文基于重叠正交变换和稀疏贝叶斯学习框架,提出一种对时域流信号进行动态压缩感知的鲁棒稀疏贝叶斯学习重构算法.该算法在消除块效应的同时,能够处理... 块效应和未知且时变的噪声强度会降低时域流信号动态稀疏重构的性能,为解决该问题,本文基于重叠正交变换和稀疏贝叶斯学习框架,提出一种对时域流信号进行动态压缩感知的鲁棒稀疏贝叶斯学习重构算法.该算法在消除块效应的同时,能够处理噪声强度未知且时变情形下的动态稀疏重构问题,相比现有的流信号稀疏贝叶斯学习算法具有更强的抗噪鲁棒性.尽管现有的时域流信号压缩感知的有效算法并不多,但实验表明,本文算法的重构信误比和重构成功率均明显高于现有的基于稀疏贝叶斯学习的流信号重构算法和基于L1-同伦的流信号重构算法,且达到相同的重构成功率所需的观测数目少于另两种算法,计算量和运行效率则与稀疏贝叶斯学习算法相近. 展开更多
关键词 块效应 流信号 稀疏贝叶斯学习 动态重构
在线阅读 下载PDF
Multi-dimensional scenario forecast for generation of multiple wind farms 被引量:11
8
作者 Ming YANG You LIN +2 位作者 Simeng ZHU Xueshan HAN Hongtao WANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第3期361-370,共10页
A novel multi-dimensional scenario forecast approach which can capture the dynamic temporal-spatial interdependence relation among the outputs of multiple wind farms is proposed.In the proposed approach,support vector... A novel multi-dimensional scenario forecast approach which can capture the dynamic temporal-spatial interdependence relation among the outputs of multiple wind farms is proposed.In the proposed approach,support vector machine(SVM)is applied for the spot forecast of wind power generation.The probability density function(PDF)of the SVM forecast error is predicted by sparse Bayesian learning(SBL),and the spot forecast result is corrected according to the error expectation obtained.The copula function is estimated using a Gaussian copula-based dynamic conditional correlation matrix regression(DCCMR)model to describe the correlation among the errors.And the multidimensional scenario is generated with respect to the estimated marginal distributions and the copula function.Test results on three adjacent wind farms illustrate the effectiveness of the proposed approach. 展开更多
关键词 Wind power generation forecast Multidimensional scenario forecast Support vector machine(SVM) sparse bayesian learning(SBL) Gaussian copula dynamic conditional correlation matrix
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部