期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hybrid dynamic model of polymer electrolyte membrane fuel cell stack using variable neural network
1
作者 李鹏 陈杰 +1 位作者 蔡涛 王光辉 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期354-361,共8页
The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,... The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,which combines the advantages of mechanism model and black-box model,is proposed in this paper.To improve the performance,the static neural network and variable neural network are used to build the black-box model.The static neural network can significantly improve the static performance of the hybrid model,and the variable neural network makes the hybrid dynamic model predict the real PEM fuel cell behavior with required accuracy.Finally,the hybrid dynamic model is validated with a 500 W PEM fuel cell.The static and transient experiment results show that the hybrid dynamic model can predict the behavior of the fuel cell stack accurately and therefore can be effectively utilized in practical application. 展开更多
关键词 PEM fuel cell variable neural network hybrid dynamic model
在线阅读 下载PDF
Simultaneous hybrid modeling of a nosiheptide fermentation process using particle swarm optimization 被引量:1
2
作者 Qiangda Yang Hongbo Gao +1 位作者 Weijun Zhang Huimin Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1631-1639,共9页
Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid... Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid model. This may result in decreasing the generalization ability of the derived hybrid model. Therefore, a simultaneous hybrid modeling approach is presented in this paper. It transforms the training of the empirical model part into a dynamic system parameter identification problem, and thus allows training the empirical model part with only measured data. An adaptive escaping particle swarm optimization(AEPSO) algorithm with escaping and adaptive inertia weight adjustment strategies is constructed to solve the resulting parameter identification problem, and thereby accomplish the training of the empirical model part. The uniform design method is used to determine the empirical model structure. The proposed simultaneous hybrid modeling approach has been used in a lab-scale nosiheptide batch fermentation process. The results show that it is effective and leads to a more consistent model with better generalization ability when compared to existing ones. The performance of AEPSO is also demonstrated. 展开更多
关键词 Bioprocess dynamic modeling neural networks Optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部