期刊文献+
共找到296,656篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
1
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
2
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
在线阅读 下载PDF
A Parallel Search System for Dynamic Multi-Objective Traveling Salesman Problem
3
作者 Weiqi Li 《Journal of Mathematics and System Science》 2014年第5期295-314,共20页
This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very u... This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture. 展开更多
关键词 dynamic multi-objective optimization traveling salesman problem parallel search algorithm solution attractor.
在线阅读 下载PDF
Aerodynamic multi-objective integrated optimization based on principal component analysis 被引量:13
4
作者 Jiangtao HUANG Zhu ZHOU +2 位作者 Zhenghong GAO Miao ZHANG Lei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1336-1348,共13页
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,... Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem. 展开更多
关键词 Aerodynamic optimization Dimensional reduction Improved multi-objective particle swarm optimization(MOPSO) algorithm multi-objective Principal component analysis
原文传递
Research Progress of Aerodynamic Multi-Objective Optimization on High-Speed Train Nose Shape 被引量:1
5
作者 Zhiyuan Dai Tian Li +1 位作者 Weihua Zhang Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1461-1489,共29页
The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress o... The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs.First,the study explores the impact of train nose shape parameters on aerodynamic performance.The parameterization methods involved in the aerodynamic multiobjective optimization ofHSTs are summarized and classified as shape-based and disturbance-based parameterizationmethods.Meanwhile,the advantages and limitations of each parameterizationmethod,aswell as the applicable scope,are briefly discussed.In addition,the NSGA-II algorithm,particle swarm optimization algorithm,standard genetic algorithm,and other commonly used multi-objective optimization algorithms and the improvements in the field of aerodynamic optimization for HSTs are summarized.Second,this study investigates the aerodynamic multi-objective optimization technology for HSTs using the surrogate model,focusing on the Kriging surrogate models,neural network,and support vector regression.Moreover,the construction methods of surrogate models are summarized,and the influence of different sample infill criteria on the efficiency ofmulti-objective optimization is analyzed.Meanwhile,advanced aerodynamic optimization methods in the field of aircraft have been briefly introduced to guide research on the aerodynamic optimization of HSTs.Finally,based on the summary of the research progress of the aerodynamicmulti-objective optimization ofHSTs,future research directions are proposed,such as intelligent recognition technology of characteristic parameters,collaborative optimization of multiple operating environments,and sample infill criterion of the surrogate model. 展开更多
关键词 High-speed train multi-objective optimization PARAMETERIZATION optimization algorithm surrogate model sample infill criterion
在线阅读 下载PDF
Review on Multi-objective Dynamic Scheduling Methods for Flexible Job Shops and Application in Aviation Manufacturing
6
作者 MA Yajie JIANG Bin +3 位作者 GUAN Li CHEN Lijun HUANG Binda CHEN Zhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期1-24,共24页
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in... Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed. 展开更多
关键词 flexible job shop dynamic scheduling machine breakdown job insertion multi-objective optimization
在线阅读 下载PDF
Multi-Objective Dynamic Induction Research of Ship Routes in the Context of Low Carbon Shipping
7
作者 He Zhang Junfeng Dong Siyuan Kong 《哈尔滨工程大学学报(英文版)》 2025年第3期593-605,共13页
To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and en... To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions. 展开更多
关键词 dynamic route induction Low-carbon shipping Short-term vessel flow prediction multi-objective induction model Maritime transport efficiency
在线阅读 下载PDF
Designing Load-Bearing Bio-Inspired Materials for Simultaneous Static Properties and Dynamic Damping:Multi-Objective Optimization for Micro-Structure
8
作者 Bo Dong Yunfei Jia Wei Wang 《Chinese Journal of Mechanical Engineering》 2025年第2期247-261,共15页
Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-i... Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-inspired materials which have excellent properties not present in conventional composites.To create such materials with desirable mechanical properties,the optimum structural parameters combination must be selected.Moreover,the optimal design of bio-inspired composites needs to take into account the trade-offs between various mechanical properties.In this paper,multi-objective optimization models were developed using structural parameters as design variables and mechanical properties as optimization objectives,including stiffness,strength,toughness,and dynamic damping.Using the NSGA-II optimization algorithm,a set of optimal solutions were solved.Additionally,three different structures in natural nacre were introduced in order to utilize the better structure when design bio-inspired materials.The range of optimal solutions that obtained using results from previous research were examined and explained why this collection of optimal solution ranges is better.Also,optimal solutions were compared with the structural features and mechanical properties of real nacre and artificial biomimetic composites to validate our models.Finally,the optimum design strategies can be obtained for nacre-like composites.Our research methodically proposes an optimization method for achieving load-bearing bio-inspired materials with excellent properties and creates a set of optimal solutions from which designers can select the one that best suits their preferences,allowing the fabricated materials to demonstrate preferred performance. 展开更多
关键词 Load-bearing bio-inspired composites Staggered structure multi-objective optimization
在线阅读 下载PDF
Multi-Objective Optimization for Hydrodynamic Performance of A Semi-Submersible FOWT Platform Based on Multi-Fidelity Surrogate Models and NSGA-Ⅱ Algorithms 被引量:1
9
作者 QIAO Dong-sheng MEI Hao-tian +3 位作者 QIN Jian-min TANG Guo-qiang LU Lin OU Jin-ping 《China Ocean Engineering》 CSCD 2024年第6期932-942,共11页
This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platfo... This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platform dimensional parameters in relation to motion responses.Although the three-dimensional potential flow(TDPF)panel method is recognized for its precision in calculating FOWT motion responses,its computational intensity necessitates an alternative approach for efficiency.Herein,a novel application of varying fidelity frequency-domain computational strategies is introduced,which synthesizes the strip theory with the TDPF panel method to strike a balance between computational speed and accuracy.The Co-Kriging algorithm is employed to forge a surrogate model that amalgamates these computational strategies.Optimization objectives are centered on the platform’s motion response in heave and pitch directions under general sea conditions.The steel usage,the range of design variables,and geometric considerations are optimization constraints.The angle of the pontoons,the number of columns,the radius of the central column and the parameters of the mooring lines are optimization constants.This informed the structuring of a multi-objective optimization model utilizing the Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ)algorithm.For the case of the IEA UMaine VolturnUS-S Reference Platform,Pareto fronts are discerned based on the above framework and delineate the relationship between competing motion response objectives.The efficacy of final designs is substantiated through the time-domain calculation model,which ensures that the motion responses in extreme sea conditions are superior to those of the initial design. 展开更多
关键词 semi-submersible FOWT platforms Co-Kriging neural network algorithm multi-fidelity surrogate model NSGA-II multi-objective algorithm Pareto optimization
在线阅读 下载PDF
An Efficient Multi-objective Approach Based on Golden Jackal Search for Dynamic Economic Emission Dispatch
10
作者 Keyu Zhong Fen Xiao Xieping Gao 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1541-1566,共26页
Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods... Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions. 展开更多
关键词 dynamic economic emission dispatch multi-objective optimization Golden jackal Euclidean distance index
在线阅读 下载PDF
Thermodynamic,Economic,and Environmental Analyses and Multi-Objective Optimization of Dual-Pressure Organic Rankine Cycle System with Dual-Stage Ejector
11
作者 Guowei Li Shujuan Bu +5 位作者 Xinle Yang Kaijie Liang Zhengri Shao Xiaobei Song Yitian Tang Dejing Zong 《Energy Engineering》 EI 2024年第12期3843-3874,共32页
A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressu... A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressure expander to pressurize a large quantity of exhaust gas to performwork for the low-pressure expander.This innovative approach addresses condensing pressure limitations,reduces power consumption during pressurization,minimizes heat loss,and enhances the utilization efficiency of waste heat steam.A thermodynamic model is developed with net output work,thermal efficiency,and exergy efficiency(W_(net,ηt,ηex))as evaluation criteria,an economicmodel is established with levelized energy cost(LEC)as evaluation index,anenvironmentalmodel is created with annual equivalent carbon dioxide emission reduction(AER)as evaluation parameter.A comprehensive analysis is conducted on the impact of heat source temperature(T_(S,in)),evaporation temperature(T_(2)),entrainment ratio(E_(r1),E_(r2)),and working fluid pressure(P_(5),P_(6))on system performance.It compares the comprehensive performance of the DE-DPORC system with that of the DPORC system at TS,in of 433.15 K and T2 of 378.15 K.Furthermore,multi-objective optimization using the dragonfly algorithm is performed to determine optimal working conditions for the DE-DPORC system through the TOPSIS method.The findings indicate that the DEDPORC system exhibits a 5.34%increase inWnet andηex,a 58.06%increase inηt,a 5.61%increase in AER,and a reduction of 47.67%and 13.51%in the heat dissipation of the condenser andLEC,compared to theDPORCsystem,highlighting the advantages of this enhanced system.The optimal operating conditions are TS,in=426.74 K,T_(2)=389.37 K,E_(r1)=1.33,E_(r2)=3.17,P_(5)=0.39 MPa,P_(6)=1.32 MPa,which offer valuable technical support for engineering applications;however,they are approaching the peak thermodynamic and environmental performance while falling short of the highest economic performance. 展开更多
关键词 Dual-pressure ORC dual-stage ejector performance analyses multi-objective optimization steam waste heat recovery
在线阅读 下载PDF
Multi-objective optimization of a high speed on/off valve for dynamic performance improvement and volume minimization
12
作者 Qi ZHONG Junxian WANG +2 位作者 Enguang XU Cheng YU Yanbiao LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期435-444,共10页
Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control s... Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control system,diminishing the practicality.To address this issue,the high-precision equivalent reluctance model of the HSV is established by employing an equivalent magnetic circuit,on which the dynamic characteristic of the HSV,as well as the effects of structural parameters on switching behaviour,are investigated.Based on this model,multi-objective optimization is adopted to design an HSV with faster dynamic performance and smaller volume,NSGA-II genetic algorithm is applied to obtain the Pareto front of the desired objectives.To assess the impact before and after optimization,an HSV based on the optimized structure is manufactured and tested.The experimental results show that the optimized HSV reduces 47.1%of its solenoid volume while improving opening and closing dynamic performance by 14.8%and 43.0%respectively,increasing maximum switching frequency by 6.2%,and expanding flow linear control area by 6.7%.These results validate the optimized structure and indicate that the optimization method provided in the paper is beneficial for developing superior HSV. 展开更多
关键词 High speed on/off valve dynamic response VOLUME Multiobjective optimization NSGA-II genetic algorithm
原文传递
A dynamic spectrum and power allocation method for co-located pulse radar and communication system coexistence
13
作者 Youwei MENG Yaoyao LI +1 位作者 Shaoxiong CAI Donglin SU 《Chinese Journal of Aeronautics》 2025年第4期501-512,共12页
Airborne pulse radar and communication systems are essential for precise detection and collision avoidance,ensuring that aircraft operate safely and efficiently.A major challenge in spectrum sharing is the allocation ... Airborne pulse radar and communication systems are essential for precise detection and collision avoidance,ensuring that aircraft operate safely and efficiently.A major challenge in spectrum sharing is the allocation of resources in both the time and frequency domains,aiming to minimize inter-system interference as the available spectrum fluctuates over time.In this paper,regarding maximization of detection probability and spectrum utilization efficiency as two fundamental objectives,a novel Dynamic Spectrum and Power Allocation based on Genetic Algorithm(GA-DSPA)model is proposed,which dynamically allocates communication channel frequency and power under the constraints of pulse radar detection probability and signal-to-interferenceplus-noise ratio of communication.To solve this bi-objective model,a non-dominated sortingbased multi-objective genetic algorithm is developed.A novel environment perception strategy and offspring sorting technique based on radar echoes are integrated into the optimization framework.Simulation results indicate that by integrating environmental monitoring mechanisms and dynamic adaptation strategies,the proposed method effectively tracks the evolving Paretooptimal Fronts(Po Fs),thereby ensuring optimal performance for both co-located pulse radar and communication systems.Hardware test results confirm that within the GA-DSPA framework,the pulse radar achieves higher detection probabilities under identical conditions,while the communication system realizes increased average throughput. 展开更多
关键词 Communication systems dynamic multi-objective optimization Electromagnetic compatibility Radar-communication coexistence Spectrum and power allocation
原文传递
Multi-objective integrated optimization based on evolutionary strategy with a dynamic weighting schedule 被引量:2
14
作者 傅武军 朱昌明 叶庆泰 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期204-207,共4页
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf... The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method. 展开更多
关键词 integrated design multi-objective optimization evolutionary strategy dynamic weighting schedule suspension system
在线阅读 下载PDF
Solving the rotating seru production problem with dynamic multi-objective evolutionary algorithms 被引量:3
15
作者 Feng Liu Kan Fang +1 位作者 Jiafu Tang Yong Yin 《Journal of Management Science and Engineering》 2022年第1期48-66,共19页
Today's volatile market conditions in electronic industries have lead to a new production system,seru(which is the Japanese pronunciation for cell),and has been widely implemented in hundreds of Japanese and other... Today's volatile market conditions in electronic industries have lead to a new production system,seru(which is the Japanese pronunciation for cell),and has been widely implemented in hundreds of Japanese and other Asia companies.In particular,the rotating seru has been widely implemented,where workers are fully cross-trained with the same skill level but may be different on the proficiency of performing tasks.The rotating seru production problem,which determines the rotating sequence of workers as well as the assembling sequence of jobs,is difficult to solve due to conflicting objectives and dynamic release of customer demands.To solve this problem,we propose a dynamic multiobjective NSGA-II based memetic algorithm.Moreover,to preserve desirable population diversity and improve the searching efficiency,we propose different problem-specific evolutionary strategies.Finally,we test the performance of our proposed memetic algorithm with other state-of-the-art multi-objective evolutionary algorithms and demonstrate the effectiveness of our proposed algorithm. 展开更多
关键词 Cellular manufacturing ASSEMBLY Rotating seru dynamic multi-objective optimization Evolutionary algorithms
原文传递
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
16
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
MULTI-OBJECTIVE SHAPE DESIGN IN AERODYNAMICS USING GAME STRATEGY 被引量:1
17
作者 唐智礼 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期195-199,共5页
Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co... Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method. 展开更多
关键词 Game theory multi-objective optimization aerodynamic design constrained optimal control theory
在线阅读 下载PDF
Structural Color Dynamic Graphics Display Based on Microlens Array 被引量:1
18
作者 LI Xue-han LIU Ling-zhi +1 位作者 HUANG Min LI Xiu 《印刷与数字媒体技术研究》 北大核心 2025年第2期162-168,共7页
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be... It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display. 展开更多
关键词 Structural color Microlens array dynamic graphics display Moirémagnification Optical anti-counterfeiting
在线阅读 下载PDF
Flow behavior and dynamic softening mechanism of Pt−10Ir precious alloy 被引量:1
19
作者 Xin-pei ZHANG Jun-jie HE +7 位作者 Lin PI Quan FU Wen-yan ZHOU Jun CHENG Sheng-wen BAI Xuan ZHOU Yi LIU Yong MAO 《Transactions of Nonferrous Metals Society of China》 2025年第1期225-242,共18页
The hot deformation behavior of Pt−10Ir alloy was studied under a wide range of deformation parameters.At a low deformation temperature(950−1150℃),the softening mechanism is primarily dynamic recovery.In addition,dyn... The hot deformation behavior of Pt−10Ir alloy was studied under a wide range of deformation parameters.At a low deformation temperature(950−1150℃),the softening mechanism is primarily dynamic recovery.In addition,dynamic recrystallization by progressive lattice rotation near grain boundaries(DRX by LRGBs)and microshear bands assisted dynamic recrystallization(MSBs assisted DRX)coordinate the deformation.However,it is difficult for the dynamic softening to offset the stain hardening due to a limited amount of DRXed grains.At a high deformation temperature(1250−1350℃),three main DRX mechanisms associated with strain rates occur:DRX by LRGBs,DRX by a homogeneous increase in misorientation(HIM)and geometric DRX(GDRX).With increasing strain,DRX by LRGBs is enhanced gradually under high strain rates;the“pinch-off”effect is enhanced at low strain rates,which was conducive to the formation of a uniform and fine microstructure. 展开更多
关键词 platinum alloy hot deformation microstructure evolution dynamic recovery dynamic recrystallization
在线阅读 下载PDF
A Surrogate-assisted Multi-objective Grey Wolf Optimizer for Empty-heavy Train Allocation Considering Coordinated Line Utilization Balance 被引量:1
20
作者 Zhigang Du Shaoquan Ni +1 位作者 Jeng-Shyang Pan Shuchuan Chu 《Journal of Bionic Engineering》 2025年第1期383-397,共15页
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc... This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector. 展开更多
关键词 Surrogate-assisted model Grey wolf optimizer multi-objective optimization Empty-heavy train allocation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部