To better reflect the psychological behavior characteristics of loss aversion,this paper builds a double reference point decision making method for dynamic multi-attribute decision-making(DMADM)problem,taking bottom-l...To better reflect the psychological behavior characteristics of loss aversion,this paper builds a double reference point decision making method for dynamic multi-attribute decision-making(DMADM)problem,taking bottom-line and target as reference pints.First,the gain/loss function is given,and the state is divided according to the relationship between the gain/loss value and the reference point.Second,the attitude function is constructed based on the results of state division to establish the utility function.Third,the comprehensive utility value is calculated as the basis for alternatives classification and ranking.Finally,the new method is used to evaluate the development level of smart cities.The results show that the new method can judge the degree to which the alternatives meet the requirements of the decision-maker.While the new method can effectively screen out the unsatisfactory alternatives,the ranking results of other alternatives are consistent with those of traditional methods.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attr...An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.展开更多
In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternati...In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.展开更多
To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation...To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.展开更多
Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation o...Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation of specific decision-making problems and choose the best method to solve them.Multi-valued neutrosophic set,as an extension of neutrosophic set,can more effectively and accurately describe incomplete,uncertain or inconsistent information.TODIM and TOPSIS methods are two commonly used multi-attribute decision-making methods,each of which has its advantages and disadvantages.This paper proposes a new method based on TODIM and TOPSIS to solve multi-attribute decision-making problems under multi-valued neutrosophic environment.After introducing the related theory of multi-valued neutrosophic set and the traditional TODIM and TOPSIS methods,the new method based on a combination of TODIM and TOPSIS methods is described.And then,two illustrative examples proved the feasibility and validity of the proposed method.Finally,the result has been compared with some existing methods under the same examples and the proposed method’s superiority has been proved.This paper studies this kind of decision-making problem from algorithm idea,algorithm steps and decision-making influencing factors.展开更多
The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with se...The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.展开更多
Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of service...Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of services in the controllable distributed information system are analyzed as the preparatory work.Using the idea of service composition as a reference,the approach translates the recovery decision-making into a planning problem regarding artificial intelligence (AI) through two steps.The first is the self-organization based on a logical view of the network,and the second is the definition of evaluation standards.Applying Bellman dynamic programming to solve the planning problem,the approach offers timely emergency response and optimal recovery source selection,meeting multiple QoS (quality of service)requirements.Experimental results demonstrate the rationality and optimality of the approach,and the theoretical analysis of its computational complexity and the comparison with conventional methods exhibit its high efficiency.展开更多
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the ...A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.展开更多
As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and...As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,展开更多
An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic ...An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes, and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average(ULWA)operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given, and the results demonstrate that it is much easier and faster for the ranking method based on expectation-variance when compared to the existing methods.展开更多
In view of the uncertainty of the monitored performance parameters of aeroengines, the fluctuating scope of the monitored infurmation during a period is taken as interval numbers, and the interval multi-attribute deci...In view of the uncertainty of the monitored performance parameters of aeroengines, the fluctuating scope of the monitored infurmation during a period is taken as interval numbers, and the interval multi-attribute decision-making method is employed to predict the performance of aeroengine, The synthetic weights of interval numbers are obtained by calculating deviation degree and possibility degree. As an example of application, 5 performance parameters monitored on 10 CF6 aeroengines of China Eastern Airlines Co., Ltd are adopted as decision attributes to verify the algorithm. The obtained synthetic ranking result shows the effectiveness and rationality of the proposed method in reflecting the performance stares of aeroengins.展开更多
A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approa...A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approach is applied to transform the dynamic HFLTSs(DHFLTSs) into a set of proportional linguistic terms to eliminate the time dimension. Second, expert reliability is measured by considering both group similarity and degree of certainty, and an optimization method is employed to quantify the linguistic terms by maximizing the group similarity. Third, through computing the attribute stability as well as its reliability, a combination rule which considers both reliability and weight is proposed to aggregate the information, and then the aggregated grade values and degree of stability are used to make a selection. Finally,the application and feasibility of the proposed method are verified through a case study and method comparison.展开更多
Using the dynamic optimization theory, we described a decision-making model for farmer choosing land use when there are several different kinds of uses for land. To obtain an empirical model that could be easily appli...Using the dynamic optimization theory, we described a decision-making model for farmer choosing land use when there are several different kinds of uses for land. To obtain an empirical model that could be easily applied, decision rules for farmer with a single static expectation were given.展开更多
Reinforcement learning(RL)has been widely studied as an efficient class of machine learning methods for adaptive optimal control under uncertainties.In recent years,the applications of RL in optimised decision-making ...Reinforcement learning(RL)has been widely studied as an efficient class of machine learning methods for adaptive optimal control under uncertainties.In recent years,the applications of RL in optimised decision-making and motion control of intelligent vehicles have received increasing attention.Due to the complex and dynamic operating environments of intelligent vehicles,it is necessary to improve the learning efficiency and generalisation ability of RL-based decision and control algorithms under different conditions.This survey systematically examines the theoretical foundations,algorithmic advancements and practical challenges of applying RL to intelligent vehicle systems operating in complex and dynamic environments.The major algorithm frameworks of RL are first introduced,and the recent advances in RL-based decision-making and control of intelligent vehicles are overviewed.In addition to self-learning decision and control approaches using state measurements,the developments of DRL methods for end-to-end driving control of intelligent vehicles are summarised.The open problems and directions for further research works are also discussed.展开更多
The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interva...The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.展开更多
Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten ...Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten the coexistence of oasis-desert ecosystems is still scarce, especially under the compounding effects of human activities and climatic changes. Here, we assessed the impacts of irrigated agriculture on hydrological regimes in oasisdesert systems, investigated the spatio-temporal variations of soil salinization in irrigated cropland, and evaluated the implications of the interplays of soil salinization and groundwater degradation on the coexistence of oasis-desert ecosystems in northwestern China, based on meaningful modelling approaches and comprehensive measurements over 1995–2020. The results showed that the irrigation return flow coefficient decreased sharply from 0.21 ± 0.09 in the traditional irrigation period to 0.09 ± 0.01 in the water-saving irrigation period. The continuous drop in groundwater tables and significant degradation of groundwater quality are occurring throughout this watershed. The eco-environmental flows are reaching to their limit with watershed closures(i.e.,the drainage from the oasis region into the desert region is being weakened or even eliminated), although these progressions were largely hidden by regional precipitation and streamflow variability. The process of salt migration and accumulation across different landscapes in oasis-desert system is being reshaped, and soil salinization in water-saving agricultural irrigated lands is accelerating with a regional average annual growth rate of18%. The vegetation in this watershed is degrading, and anthropogenic disturbance accelerates this trend. Our results highlight that environmental stress adaptation strategies must account for resilience maintenance to avoid accelerating catastrophic transitions in oasis-desert ecosystems. Determining the optimal oasis scales and formulating the best irrigation management plans are effective and resilient decision-making ways to maintain the coexistence relationship of oasis-desert ecosystem in drylands.展开更多
In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the...In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality.Probability hesitant fuzzy sets,however,have grown in popularity due to their advantages in communicating complex information.Therefore,this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information.The agent attribute weight vector should be obtained by using the maximum deviation method and Hamming distance.The probabilistic hesitancy fuzzy information matrix of each agent is then arranged to determine the comprehensive evaluation of two matching agent sets.The agent satisfaction degree is calculated using the technique for order preference by similarity to ideal solution(TOPSIS).Additionally,the multi-object programming technique is used to establish a TSM method with the objective of maximizing the agent satisfaction of two-sided agents,and the matching schemes are then established by solving the built model.The study concludes by providing a real-world supply-demand scenario to illustrate the effectiveness of the proposed method.The proposed method is more flexible than prior research since it expresses evaluation information using probability hesitating fuzzy sets and can be used in scenarios when attribute weight information is unclear.展开更多
In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle...In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62003379Natural Science Foundation of Guangdong Province under Grant 2018A030313317+3 种基金Special Research Project on the Prevention and Control of COVID-19 Epidemic in Colleges and Universities of Guangdong under Grant 2020KZDZX1118Guangzhou Science and Technology Program under Grant 202002030246Research Project and Development Plan for Key Areas of Guangdong Province under Grant 2020B0202080002Guangzhou Key Research Base of Humanities and Social Sciences(Research Center of Agricultural Products Circulation in Guangdong-Hong Kong-Macao Greater Bay Area).
文摘To better reflect the psychological behavior characteristics of loss aversion,this paper builds a double reference point decision making method for dynamic multi-attribute decision-making(DMADM)problem,taking bottom-line and target as reference pints.First,the gain/loss function is given,and the state is divided according to the relationship between the gain/loss value and the reference point.Second,the attitude function is constructed based on the results of state division to establish the utility function.Third,the comprehensive utility value is calculated as the basis for alternatives classification and ranking.Finally,the new method is used to evaluate the development level of smart cities.The results show that the new method can judge the degree to which the alternatives meet the requirements of the decision-maker.While the new method can effectively screen out the unsatisfactory alternatives,the ranking results of other alternatives are consistent with those of traditional methods.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.
文摘In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.
基金supported by the Research Innovation Project of Shanghai Education Committee (08YS19)the Excellent Young Teacher Project of Shanghai University
文摘To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.
基金This research was funded by the Humanities and Social Sciences Foundation of Ministry of Education of the Peoples Republic of China(17YJA630115)The recipient of the founding is DX.
文摘Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation of specific decision-making problems and choose the best method to solve them.Multi-valued neutrosophic set,as an extension of neutrosophic set,can more effectively and accurately describe incomplete,uncertain or inconsistent information.TODIM and TOPSIS methods are two commonly used multi-attribute decision-making methods,each of which has its advantages and disadvantages.This paper proposes a new method based on TODIM and TOPSIS to solve multi-attribute decision-making problems under multi-valued neutrosophic environment.After introducing the related theory of multi-valued neutrosophic set and the traditional TODIM and TOPSIS methods,the new method based on a combination of TODIM and TOPSIS methods is described.And then,two illustrative examples proved the feasibility and validity of the proposed method.Finally,the result has been compared with some existing methods under the same examples and the proposed method’s superiority has been proved.This paper studies this kind of decision-making problem from algorithm idea,algorithm steps and decision-making influencing factors.
基金the National Natural Science Fundation of China (10377014).
文摘The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.
文摘Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of services in the controllable distributed information system are analyzed as the preparatory work.Using the idea of service composition as a reference,the approach translates the recovery decision-making into a planning problem regarding artificial intelligence (AI) through two steps.The first is the self-organization based on a logical view of the network,and the second is the definition of evaluation standards.Applying Bellman dynamic programming to solve the planning problem,the approach offers timely emergency response and optimal recovery source selection,meeting multiple QoS (quality of service)requirements.Experimental results demonstrate the rationality and optimality of the approach,and the theoretical analysis of its computational complexity and the comparison with conventional methods exhibit its high efficiency.
基金supported by the National Natural Science Foundation of China (60904059 60975049)+1 种基金the Philosophy and Social Science Foundation of Hunan Province (2010YBA104)the National High Technology Research and Development Program of China (863 Program)(2009AA04Z107)
文摘A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.
基金College Doctor Foundation (20060699026)Aviation Basic Scientific Foundation (05D53021).
文摘As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,
基金The National Natural Science Foundation of China(No.70671017)
文摘An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes, and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average(ULWA)operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given, and the results demonstrate that it is much easier and faster for the ranking method based on expectation-variance when compared to the existing methods.
文摘In view of the uncertainty of the monitored performance parameters of aeroengines, the fluctuating scope of the monitored infurmation during a period is taken as interval numbers, and the interval multi-attribute decision-making method is employed to predict the performance of aeroengine, The synthetic weights of interval numbers are obtained by calculating deviation degree and possibility degree. As an example of application, 5 performance parameters monitored on 10 CF6 aeroengines of China Eastern Airlines Co., Ltd are adopted as decision attributes to verify the algorithm. The obtained synthetic ranking result shows the effectiveness and rationality of the proposed method in reflecting the performance stares of aeroengins.
基金supported by the National Natural Science Foundation of China(71171112 71502073+2 种基金 71601002)the Scientific Innovation Research of College Graduates in Jiangsu Province(KYZZ150094)the Anhui Provincial Natural Science Foundation(1708085MG168)
文摘A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approach is applied to transform the dynamic HFLTSs(DHFLTSs) into a set of proportional linguistic terms to eliminate the time dimension. Second, expert reliability is measured by considering both group similarity and degree of certainty, and an optimization method is employed to quantify the linguistic terms by maximizing the group similarity. Third, through computing the attribute stability as well as its reliability, a combination rule which considers both reliability and weight is proposed to aggregate the information, and then the aggregated grade values and degree of stability are used to make a selection. Finally,the application and feasibility of the proposed method are verified through a case study and method comparison.
文摘Using the dynamic optimization theory, we described a decision-making model for farmer choosing land use when there are several different kinds of uses for land. To obtain an empirical model that could be easily applied, decision rules for farmer with a single static expectation were given.
基金supported by the National Natural Science Foundation of China under Grant T2521006,Grant 62403483,Grant 62533021 and Grant U24A20279.
文摘Reinforcement learning(RL)has been widely studied as an efficient class of machine learning methods for adaptive optimal control under uncertainties.In recent years,the applications of RL in optimised decision-making and motion control of intelligent vehicles have received increasing attention.Due to the complex and dynamic operating environments of intelligent vehicles,it is necessary to improve the learning efficiency and generalisation ability of RL-based decision and control algorithms under different conditions.This survey systematically examines the theoretical foundations,algorithmic advancements and practical challenges of applying RL to intelligent vehicle systems operating in complex and dynamic environments.The major algorithm frameworks of RL are first introduced,and the recent advances in RL-based decision-making and control of intelligent vehicles are overviewed.In addition to self-learning decision and control approaches using state measurements,the developments of DRL methods for end-to-end driving control of intelligent vehicles are summarised.The open problems and directions for further research works are also discussed.
文摘The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.
基金supported by the National Key R&D Program of China(2022YFF1303301)the National Natural Science Foundation of China(52179026,42101115,41901100,32301671)+1 种基金the China Postdoctoral Science Foundation Project(2022M720162)the XPCC Science and Technique Foundation(2021AB021).
文摘Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten the coexistence of oasis-desert ecosystems is still scarce, especially under the compounding effects of human activities and climatic changes. Here, we assessed the impacts of irrigated agriculture on hydrological regimes in oasisdesert systems, investigated the spatio-temporal variations of soil salinization in irrigated cropland, and evaluated the implications of the interplays of soil salinization and groundwater degradation on the coexistence of oasis-desert ecosystems in northwestern China, based on meaningful modelling approaches and comprehensive measurements over 1995–2020. The results showed that the irrigation return flow coefficient decreased sharply from 0.21 ± 0.09 in the traditional irrigation period to 0.09 ± 0.01 in the water-saving irrigation period. The continuous drop in groundwater tables and significant degradation of groundwater quality are occurring throughout this watershed. The eco-environmental flows are reaching to their limit with watershed closures(i.e.,the drainage from the oasis region into the desert region is being weakened or even eliminated), although these progressions were largely hidden by regional precipitation and streamflow variability. The process of salt migration and accumulation across different landscapes in oasis-desert system is being reshaped, and soil salinization in water-saving agricultural irrigated lands is accelerating with a regional average annual growth rate of18%. The vegetation in this watershed is degrading, and anthropogenic disturbance accelerates this trend. Our results highlight that environmental stress adaptation strategies must account for resilience maintenance to avoid accelerating catastrophic transitions in oasis-desert ecosystems. Determining the optimal oasis scales and formulating the best irrigation management plans are effective and resilient decision-making ways to maintain the coexistence relationship of oasis-desert ecosystem in drylands.
基金supported by the National Natural Science Foundation in China(Yue Qi,Project No.71861015).
文摘In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality.Probability hesitant fuzzy sets,however,have grown in popularity due to their advantages in communicating complex information.Therefore,this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information.The agent attribute weight vector should be obtained by using the maximum deviation method and Hamming distance.The probabilistic hesitancy fuzzy information matrix of each agent is then arranged to determine the comprehensive evaluation of two matching agent sets.The agent satisfaction degree is calculated using the technique for order preference by similarity to ideal solution(TOPSIS).Additionally,the multi-object programming technique is used to establish a TSM method with the objective of maximizing the agent satisfaction of two-sided agents,and the matching schemes are then established by solving the built model.The study concludes by providing a real-world supply-demand scenario to illustrate the effectiveness of the proposed method.The proposed method is more flexible than prior research since it expresses evaluation information using probability hesitating fuzzy sets and can be used in scenarios when attribute weight information is unclear.
文摘In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.