期刊文献+
共找到921篇文章
< 1 2 47 >
每页显示 20 50 100
Development of Electroactive Biofiltration Dynamic Membrane for Enhanced Wastewater Treatment and Fouling Mitigation:Unraveling the Growth Equilibrium Mechanisms of Fouling Layer
1
作者 Chengxin Niu Wei Shi +3 位作者 Zhouyan Li Zhiwei Qiu Yun Guo Zhiwei Wang 《Engineering》 2025年第7期60-71,共12页
We developed a strategy involving an electroactive biofiltration dynamic membrane(EBDM)for wastewater treatment and membrane fouling mitigation.This approach utilizes a cathode potential within an anaerobic dynamic me... We developed a strategy involving an electroactive biofiltration dynamic membrane(EBDM)for wastewater treatment and membrane fouling mitigation.This approach utilizes a cathode potential within an anaerobic dynamic membrane bioreactor to establish a growth equilibrium electroactive fouling layer.Over a 240 day operation period,the EBDM exhibited outstanding performance,characterized by an ultralow fouling rate(transmembrane pressure<2.5 kPa),superior effluent quality(chemical oxygen demand(COD)removal>93%and turbidity 2 nephelometric turbidity units(NTU)),and a 7.2%increase in methane(CH4)productivity.Morphological analysis revealed that the EBDM acted as a biofilter consisting of a structured,interconnected,multilevel dynamic membrane system with orderly clogging.In the EBDM system,the balanced-growth fouling layers presented fewer biofoulants and looser secondary protein structures.Furthermore,the applied electric field modified the physicochemical properties of the biomass,leading to a decrease in fouling potential.Quartz crystal microbalance with dissipation monitoring analysis indicated that growth equilibrium promoted a looser fouling layer with a lower adsorption mass than did the denser,viscoelastic fouling layer observed in the control reactor.Metagenomic sequencing further demonstrated that continuous electrical stimulation encouraged the development of an electroactive fouling layer with enhanced microbial metabolic functionality on the EBDM.This approach selectively modifies metabolic pathways and increases the degradation of foulants.The EBDM strategy successfully established an ordered-clogging,step-filtered,and balanced-growth electroactive fouling layer,achieving a synergistic effect in reducing membrane fouling,enhancing effluent quality,and improving CH_(4)productivity. 展开更多
关键词 Wastewater treatment Electroactive biofiltration dynamic membrane Growth equilibrium Biomass properties Microbial metabolism
在线阅读 下载PDF
In-situ and operando characterizations in membrane electrode assemblies:Resolving dynamic interfaces and degradation pathways in CO_(2)electrocatalysis
2
作者 Jiachen Wu Pengfei Liu Huagui Yang 《Chinese Journal of Catalysis》 2025年第12期1-8,共8页
Membrane electrode assemblies(MEAs)represent the preeminent configuration for industrial-scale CO_(2)electrolysis,yet their dynamic interfaces and degradation pathways remain inadequately resolved.This perspective hig... Membrane electrode assemblies(MEAs)represent the preeminent configuration for industrial-scale CO_(2)electrolysis,yet their dynamic interfaces and degradation pathways remain inadequately resolved.This perspective highlights how advanced operando characterization techniques-synchrotron X-ray spectroscopy,spatially resolved X-ray fluorescence,vibrational spectroscopy,electrochemical diagnostics et al.-decipher atomic-scale catalyst evolution,transient ion/water fluxes,and extreme interfacial microenvironments under industrial current densities.These methodologies reveal critical degradation mechanisms,including catalyst restructuring,carbonate precipitation-driven flooding,and cation-induced pH gradients,which are inaccessible to conventional ex-situ or three-electrode analyses.Integrating multimodal characterization is paramount to correlate transient interfacial chemistry with system-level performance,guiding the rational design of durable,high-selectivity MEAs for scalable CO_(2)conversion. 展开更多
关键词 Operando characterization membrane electrode assemblies Electrocatalytic CO_(2)reduction Interfacial dynamics Degradation pathways
在线阅读 下载PDF
Molecular Dynamics Simulation Studies on the Micromorphology and Proton Transport of Nafion/Ti_(3)C_(2)T_(x) Composite Membrane
3
作者 Zhi-Yue Han Su-Peng Pei +1 位作者 Chun-Yang Yu Yong-Feng Zhou 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第3期373-387,I0009,共16页
The perfluorosulfonic acid(PFSA) membrane doped with two-dimensional conductive filler Ti_(3)C_(2)T_(x) is a fuel cell proton exchange membrane with high application potential. Experimental studies showed that the pro... The perfluorosulfonic acid(PFSA) membrane doped with two-dimensional conductive filler Ti_(3)C_(2)T_(x) is a fuel cell proton exchange membrane with high application potential. Experimental studies showed that the proton conductivity of Nafion/Ti_(3)C_(2)T_(x) composite membrane is improved significantly compared with that in pure Nafion. However, the microscopic mechanism of doping on the enhancement of membrane performance is remain unclear now. In this work, molecular dynamics simulation was used to investigate the microscopic morphology and proton transport behaviors of Nafion/Ti_(3)C_(2)T_(x) composite membrane at the molecular level. The results shown that there were significant differences about the diffusion kinetics of water molecules and hydroxium ions in Nafion/Ti_(3)C_(2)T_(x) at low and high hydration levels in the nanoscale region.With the increase of water content, Ti_(3)C_(2)T_(x) in membrane was gradually surrounded by ambient water molecules to form a hydration layer, and forming a relatively continuous proton transport channel between Nafion polymer and Ti_(3)C_(2)T_(x) monomer. The continuous proton transport channel could increase the number of binding sites of proton and thus achieving high proton conductivity and high mobility of water molecules at higher hydration level. The current work can provide a theoretical guidance for designing new type of Nafion composite membranes. 展开更多
关键词 Nafion/Ti_(3)C_(2)T_(x)composite membrane Proton transport Molecular dynamics simulation
原文传递
Dynamic Response of Tensile Membrane Structure under Coupling Effect of Wind and Rain
4
作者 Weiju Song Heyuan Yang Jie Chen 《Journal of Applied Mathematics and Physics》 2024年第11期3816-3826,共11页
Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents... Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance. 展开更多
关键词 Tension membrane Structure Wind and Rain Coupling Effect dynamic Response Nonlinear Vibration
在线阅读 下载PDF
Pulsed dynamic electrolysis enhanced PEMWE hydrogen production:Revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape 被引量:1
5
作者 Xuewei Zhang Wei Zhou +13 位作者 Yuming Huang Liang Xie Tonghui Li Huimin Kang Lijie Wang Yang Yu Yani Ding Junfeng Li Jiaxiang Chen Miaoting Sun Shuo Cheng Xiaoxiao Meng Jihui Gao Guangbo Zhao 《Journal of Energy Chemistry》 2025年第1期201-214,共14页
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for... The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors. 展开更多
关键词 Water electrolysis Hydrogen production Pulsed dynamic electrolysis Proton exchange membrane water electrolysis Mass transport
在线阅读 下载PDF
Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO_(2) reduction reaction through numerical simulations 被引量:1
6
作者 Lili Zhang Hui Gao +7 位作者 Gong Zhang Yuning Dong Kai Huang Zifan Pang Tuo Wang Chunlei Pei Peng Zhang Jinlong Gong 《Chinese Chemical Letters》 2025年第1期332-337,共6页
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec... Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR. 展开更多
关键词 Electrochemical reduction of CO_(2) membrane electrode assembly Mass transfer Gas diffusion electrode Computational fluid dynamics
原文传递
Unraveling the formation and stabilization of vesicle penetration pore by molecular dynamics simulations
7
作者 Zhi Zheng Mingkun Zhang +2 位作者 Qing Yang Mian Long Shouqin Lü 《Acta Mechanica Sinica》 2025年第7期357-376,共20页
The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance,since such the structures extensively exist in living body with various functions.How... The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance,since such the structures extensively exist in living body with various functions.However,the related formation dynamics is unclear because of the limitation of experimental techniques.This work developed a new model of intra-vesicular fusion to elaborate the formation and stabilization of penetration pores by employing molecular dynamics simulations,based on simplified spherical lipid vesicle system,and investigated the regulation of membrane lipid composition.Results showed that penetration pore could be successfully formed based on the strategy of membrane fusion.The ease of intra-vesicular fusion and penetration pore formation was closely correlated with the lipid curvature properties,where negative spontaneous curvature of lipids seemed to be unfavorable for intra-vesicle fusion.Furthermore,the inner membrane tension around the pore was much larger than other regions,which governed the penetration pore size and stability.This work provided basic understanding for vesicle penetration pore formation and stabilization mechanisms. 展开更多
关键词 Penetration pore membrane fusion membrane tension Molecular dynamics simulation
原文传递
Nanoparticle Induces Membrane Fusion in a State-wise and Property-sensitive Mode
8
作者 Chi-Yun Ma Xue-Wei Dong +2 位作者 Xue-Mei Lu Bing Yuan Kai Yang 《Chinese Journal of Polymer Science》 2025年第1期235-244,I0014,共11页
Membrane fusion is essential for many cellular physiological functions,which is modulated by highly precise molecular mechanism involving multiple energy barriers.Nanoparticles(NPs),which exhibit immense potential in ... Membrane fusion is essential for many cellular physiological functions,which is modulated by highly precise molecular mechanism involving multiple energy barriers.Nanoparticles(NPs),which exhibit immense potential in the field of biomedical applications,can act as fusogen proteins to initiate and regulate membrane fusion.However,the underlying mechanisms of NP-induced membrane fusion and the molecular details involved remain largely elusive.Here,using coarse-grained molecular dynamics simulations,we systematically investigate the NP-induced membrane fusion behaviors and the influences of NP properties(size,hydrophobicity and hydrophilicity).Our results show that the vesicle-bilayer fusion induced by a hydrophobic NP is an intricately state-wise process,involving the approach and local deformation of the vesicle and bilayer bridging by the NP,the flip-flop of lipids from proximal leaflets and the formation of a fusion stalk,as well as further lipid interactions between distal leaflets and complete fusion.Moreover,we find that NP properties have distinct effects on membrane fusion and thus the optimal NP conditions for facilitating membrane fusion are obtained.Our work provides a mechanistic understanding of NP-induced membrane fusion and offers useful insights for efficient and controlled regulation of membrane fusion. 展开更多
关键词 NANOPARTICLE membrane fusion Molecular dynamics simulation Coarse-grained model
原文传递
Polymer Fibers Based on Dynamic Covalent Chemistry
9
作者 Luzhi Zhang Xiaozhuang Zhou +1 位作者 Xinhong Xiong Jiaxi Cui 《Chinese Journal of Polymer Science》 2025年第2期245-260,共16页
Polymer fibers are an important class of materials throughout human history,evolving from natural fibers such as cotton and silk to modern synthetic fibers such as nylon and polyester.With the advancement of materials... Polymer fibers are an important class of materials throughout human history,evolving from natural fibers such as cotton and silk to modern synthetic fibers such as nylon and polyester.With the advancement of materials science,the development of new fibers is also advancing.Polymer fibers based on dynamic covalent chemistry have attracted widespread attention due to their unique reversibility and responsiveness.Dynamic covalent chemistry has shown great potential in improving the spinnability of materials,achieving green preparation of fibers,and introducing self-healing,recyclability,and intelligent response properties into fibers.In this review,we divide these fiber materials based on dynamic covalent chemistry into monocomponent fibers,composite fibers,and fiber membranes.The preparation methods,structural characteristics,functional properties,and application performance of these fibers are summarized.The application potential and challenges of fibers based on dynamic covalent chemistry are discussed,and their future development trends are prospected. 展开更多
关键词 dynamic covalent chemistry Monocomponent fibers Composite fibers Fiber membranes
原文传递
Dynamic membrane bioreactor performance enhancement by powdered activated carbon addition:Evaluation of sludge morphological,aggregative and microbial properties 被引量:12
10
作者 Zhenzhen Yu Yisong Hu +2 位作者 Mawuli Dzakpasu Xiaochang C.Wang Huu Hao Ngo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第1期73-83,共11页
The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pol... The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pollutants removal and filtration performance. Sludge properties were analyzed through various analytical measurements. The results showed that the improved sludge aggregation ability and the evolution of microbial communities affected sludge morphology in PAC-DMBR, as evidenced by the formation of large, regularly shaped and strengthened sludge flocs. The modifications of sludge characteristics promoted the formation process and filtration flux of the dynamic membrane(DM) layer. Additionally, PAC addition did not exert very significant influence on the propagation of eukaryotes(protists and metazoans)and microbial metabolic activity. High-throughput pyrosequencing results indicated that adding PAC improved the bacterial diversity in activated sludge, as PAC addition brought about additional microenvironment in the form of biological PAC(BPAC), which promoted the enrichment of Acinetobacter(13.9%), Comamonas(2.9%), Flavobacterium(0.31%) and Pseudomonas(0.62%), all contributing to sludge flocs formation and several(such as Acinetobacter) capable of biodegrading relatively complex organics. Therefore, PAC addition could favorably modify sludge properties from various aspects and thus enhance the DMBR performance. 展开更多
关键词 dynamic membrane BIOREACTOR Powdered activated carbon SLUDGE property FILTRATION performance WASTEWATER treatment MICROBIAL community
原文传递
Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane 被引量:4
11
作者 Xinghua Shi Yong Kong H. Gao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期161-169,共9页
Motivated by recent experimental observations that carbon nanotubes (CNT) can enter animal cells, here we conduct coarse grained molecular dynamics and theoretical studies of the intrinsic interaction mechanisms bet... Motivated by recent experimental observations that carbon nanotubes (CNT) can enter animal cells, here we conduct coarse grained molecular dynamics and theoretical studies of the intrinsic interaction mechanisms between CNT's and lipid bilayer. The results indicate that CNT-cell interaction is dominated by van der Waals and hydrophobic forces, and that CNT's with sufficiently small radii can directly pierce through cell membrane while larger tubes tend to enter cell via a wrapping mechanism. Theoretical models are proposed to explain the observed size effect in transition of entry mechanisms. 展开更多
关键词 Molecular dynamics Carbon nanotube Cell membrane Interaction mechanism
在线阅读 下载PDF
Analysis of pH-dependent Structure and Mass Transfer Characteristics of Polydopamine Membranes by Molecular Dynamics Simulation 被引量:2
12
作者 潘福生 邢瑞思 姜忠义 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第10期1092-1097,共6页
Detailed atomistic structures are constructed for polydopamine membranes containing different amounts of catechol and quinone groups to investigate the effect of p H value in the membrane casting solution on sorption ... Detailed atomistic structures are constructed for polydopamine membranes containing different amounts of catechol and quinone groups to investigate the effect of p H value in the membrane casting solution on sorption and diffusion of small gas molecules(water and propylene) in the membranes. Interactions between dopamine oligomers are calculated, and it is found that the interactions decrease from- 2356.52 k J·mol-1in DOP-1 to-1586.69 k J·mol-1in DOP-3 when all of the catechol groups are converted to quinone groups. The mobility of polymer segments and free volume properties of polydopamine membranes are analyzed. The sorption quantities of water and propylene in the membrane are calculated using Grand Canonical Monte Carlo method. The sorption results show that water adsorbed in DOP-1, DOP-2 and DOP-3 are 17.3, 18.6 and 20.0 mg water per gram polymer, respectively, and no propylene molecule can be adsorbed. The diffusion behavior of water molecules in the membrane is investigated by molecular dynamics simulation. The diffusion coefficients of water molecules in DOP-1, DOP-2 and DOP-3 membranes are(1.80 ± 0.52) × 10-11,(3.40 ± 0.64) × 10-11and(4.50 ± 0.92) × 10-11m2·s-1, respectively. The predicted sorption quantities and diffusion coefficients of water and propylene in the membrane present the same trends as those from experimental results. 展开更多
关键词 membranes POLYDOPAMINE MOLECULAR dynamics simulation Free VOLUME DIFFUSION
在线阅读 下载PDF
Thermodynamic prediction and experimental investigation of short-term dynamic membrane formation in dynamic membrane bioreactors:Effects of sludge properties 被引量:1
13
作者 Zhenzhen Yu Yisong Hu +1 位作者 Mawuli Dzakpasu Xiaochang C.Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第3期85-96,共12页
In dynamic membrane bioreactors(DMBRs), a dynamic membrane(DM) forms on a support material to act as the separation membrane for solids and liquids. In this study, batch filtration tests were carried out in a DMBR usi... In dynamic membrane bioreactors(DMBRs), a dynamic membrane(DM) forms on a support material to act as the separation membrane for solids and liquids. In this study, batch filtration tests were carried out in a DMBR using nylon mesh(25 μm) as support material to filtrate sludge suspensions of variable properties from three different sources to evaluate the effects on the short-term DM formation process(within 240 min). Furthermore, the extended Derjaguin–Landau–Verwey–Overbeek(XDLVO) theory was applied to analyze the sludge adhesion and cohesion behaviors on the mesh surface to predict quantitative parameters of the short-term DM formation process(including initial formation and maturation stage). The filtration results showed that the order of the initial DM formation time(permeate turbidity <1 NTU as an indicator) was as follows: sludge with poor settleability and dewaterability < normal sludge <sludge with poor flocculability. Moreover, normal sludge(regarding settleability, dewaterability,flocculability, and extracellular polymeric substance) showed a more acceptable DM formation performance(short DM formation time, low permeate turbidity, and high permeate flux) than sludge with poor settleability, dewaterability and flocculability. The influence of sludge properties on the initial DM formation time corroborates the prediction of sludge adhesion behaviors by XDLVO theory. Additionally, the XDLVO calculation results showed that acid–based interaction, energy barrier, and secondary energy minimum were important determinants of the sludge adhesion and cohesion behaviors. Therefore, short-term DM formation process may be enhanced to achieve stable long-term DMBR operation through positive modification of the sludge properties. 展开更多
关键词 dynamic membrane BIOREACTOR dynamic membrane FORMATION XDLVO theory SLUDGE properties Wastewater treatment
原文传递
Fouling process and anti-fouling mechanisms of dynamic membrane assisted by photocatalytic oxidation under sub-critical fluxes 被引量:1
14
作者 Tao Yang Fen Liu +3 位作者 Houfeng Xiong Qiyong Yang Fushan Chen Changchao Zhan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第8期1798-1806,共9页
Membrane fouling is often considered as a hindrance for the application of microfiltration/ultrafiltration(MF/UF) for drinking water production. A novel process of photocatalytic membrane reactor/dynamic membrane(PMR/... Membrane fouling is often considered as a hindrance for the application of microfiltration/ultrafiltration(MF/UF) for drinking water production. A novel process of photocatalytic membrane reactor/dynamic membrane(PMR/DM), operating in a continuous mode under sub-critical flux, was proposed for the mitigation of membrane fouling caused by humic acids(HAs) in water. The mechanism of membrane fouling alleviation with synergistic photocatalytic oxidation and dynamic layer isolating effect was comprehensively investigated from the characterization of foulant evolution responsible for the reversible and irreversible fouling. The results showed that the PMR/DM utilized photocatalytic oxidation to enhance the porosity and hydrophilicity of the fouling layer by converting the high molecular weight(MW) and hydrophobic HA molecules with carboxylic functional groups and aromatic structures into low-MW hydrophilic or transphilic fractions, including tryptophan-like or fulvic-like substances. The fouling layer formed in the PMR/DM by combination of photocatalytic oxidation and DM running at a sub-critical flux of 100 L·h^-1·m^-2, was more hydrophilic and more porous, resulting in the lowest trans-membrane pressure(TMP) growth rates, as compared to the processes of ceramic membrane(CM), DM and PMR/CM.Meanwhile, the dynamic layer prevented the foulants, particularly the high-MW hydrophobic fractions,from contacting the primary membrane, which enabled the membrane permeability to be restored easily. 展开更多
关键词 dynamic membrane Photocatalytic membrane reactor HUMIC ACIDS membrane FOULING Sub-critical flux
在线阅读 下载PDF
ANALYSIS OF THE LARGE DEFLECTION DYNAMIC PLASTIC RESPONSE OF SIMPLY-SUPPORTED CIRCULAR PLATES BY THE“MEMBRANE FACTOR METHOD” 被引量:2
15
作者 Yu Tongxi (1) Chen Faliang (1) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1990年第4期333-342,共10页
Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane fo... Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence. 展开更多
关键词 dynamic plastic response of plates large deflection membrane Factor Method
在线阅读 下载PDF
DYNAMIC CHARACTERISTICS IN INCOMPRESSIBLE HYPERELASTIC CYLINDRICAL MEMBRANES 被引量:2
16
作者 Datian Niu Xuegang Yuan +1 位作者 Changjun Cheng Jiusheng Ren 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第5期420-427,共8页
In this paper, the dynamic characteristics are examined for a cylindrical membrane composed of a transversely isotropic incompressible hyperelastic material under an applied uniform radial constant pressure at its inn... In this paper, the dynamic characteristics are examined for a cylindrical membrane composed of a transversely isotropic incompressible hyperelastic material under an applied uniform radial constant pressure at its inner surface. A second-order nonlinear ordinary differential equation that approximately describes the radial oscillation of the inner surface of the membrane with respect to time is obtained. Some interesting conclusions are proposed for different materials, such as the neo-Hookean material, the Mooney-Rivlin material and the Rivlin-Saunders material. Firstly, the bifurcation conditions depending on the material parameters and the pressure loads are determined. Secondly, the conditions of periodic motion are presented in detail for membranes composed of different materials. Meanwhile, numerical simulations are also provided. 展开更多
关键词 incompressible hyperelastic material cylindrical membrane dynamical character- istic nonlinear periodic oscillation
原文传递
Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack 被引量:5
17
作者 邵庆龙 卫东 +1 位作者 曹广益 朱新坚 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第2期218-224,共7页
A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain p... A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller. 展开更多
关键词 proton exchange membrane fuel cell stack dynamic thermal transfer model temperature control
在线阅读 下载PDF
Mass Transfer, Gas Holdup, and Kinetic Models of Batch and Continuous Fermentation in a Novel Rectangular Dynamic Membrane Airlift Bioreactor 被引量:2
18
作者 Ganlu Li Kequan Chen +5 位作者 Yanpeng Wei Jinlei Zeng Yue Yang Feng He Hui Li Pingkai Ouyang 《Engineering》 SCIE EI CAS 2022年第6期153-163,共11页
Compared with conventional cylinder airlift bioreactors(CCABs)that produce coarse bubbles,a novel rectangular dynamic membrane airlift bioreactor(RDMAB)developed in our lab produces fine bubbles to enhance the volumet... Compared with conventional cylinder airlift bioreactors(CCABs)that produce coarse bubbles,a novel rectangular dynamic membrane airlift bioreactor(RDMAB)developed in our lab produces fine bubbles to enhance the volumetric oxygen mass transfer coefficient(k_(L)a)and gas holdup,as well as improve the bioprocess in a bioreactor.In this study,we compared mass transfer,gas holdup,and batch and con-tinuous fermentation for RNA production in CCAB and RDMAB.In addition,unstructured kinetic models for microbial growth,substrate utilization,and RNA formation were established.In batch fermentation,biomass,RNA yield,and substrate utilization in the RDMAB were higher than those in the CCAB,which indicates that dynamic membrane aeration produced a high k_(L)a by fine bubbles;a higher k_(L)a is more bene-ficial to aerobic fermentation.The starting time of continuous fermentation in the RDMAB was 20 h ear-lier than that in the CCAB,which greatly improved the biological process.During continuous fermentation,maintaining the same dissolved oxygen level and a constant dilution rate,the biomass accumulation and RNA concentration in the RDMAB were 9.71% and 11.15% higher than those in the CCAB,respectively.Finally,the dilution rate of RDMAB was 16.7% higher than that of CCAB during con-tinuous fermentation while maintaining the same air aeration.In summary,RDMAB is more suitable for continuous fermentation processes.Developing new aeration and structural geometry in airlift bioreac-tors to enhance k_(L)a and gas holdup is becoming increasingly important to improve bioprocesses in a bioreactor. 展开更多
关键词 Airlift bioreactor dynamic membrane Kinetic model Batch fermentation Continuous fermentation
在线阅读 下载PDF
Theoretical Study on Dynamic Filtration with the Membrane in Simple Harmonic Motion 被引量:1
19
作者 周先桃 陈文梅 +2 位作者 褚良银 易美桂 陈明惠 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期723-727,共5页
A simple harmonic motion is proposed to make the membrane move in a simpleharmonic way so as to enhance the membrane filtration, and minimize the membrane fouling andconcentration polarization. The velocity distributi... A simple harmonic motion is proposed to make the membrane move in a simpleharmonic way so as to enhance the membrane filtration, and minimize the membrane fouling andconcentration polarization. The velocity distribution and pressure distribution are deduced from theNavier-Stokes equation on the basis of a laminar flow when the membrane rotates at the speed of Asin(αt). And then the shear stress, shear force, moment of force on the membrane surface and powerconsumed by viscous force are calculated. The velocity distribution demonstrates that the phase ofmembrane velocity does not synchronize with that of shear stress. The simple harmonic motion canresult in self-cleaning, optimize energy utilization, provide the velocity field with instability,and make the feed fluid fluctuation. It also results in higher shear stress on the membrane surfacethan the constant motion when they consume the same quantitative energy. 展开更多
关键词 rotating membrane filter FOULING micro-filtration dynamic filtration simple harmonic
在线阅读 下载PDF
Studies on the Response Dynamics of a Gas-Sensing Membrane Probe
20
作者 LI Fan-chao (Institute of Biochemical Engineering, East China University of Chemical Technology, Shanghai, 200237) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1992年第4期388-394,共7页
The present paper covers the response dynamics of a gas-sensing membrane probe, which is described by the dynamic differential equation based upon a steady-state diffusion process. The theoretical results indicate tha... The present paper covers the response dynamics of a gas-sensing membrane probe, which is described by the dynamic differential equation based upon a steady-state diffusion process. The theoretical results indicate that the response time is dependent upon membrane properties, membrane geometry, internal electrolyte composition, the dissociation constant of the conjugate reaction, the initial gas concentration in the internal electrolyte, and the gas concentration in the evaluation sample. The theoretical prediction is in good agreement with the experimental result. A method for determining a gas-sensing probe' s dynamic parameter is proposed in this paper also. 展开更多
关键词 ELECTRODE dynamicS PROBE Model membrane
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部