Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
The path planning problem of complex wild environment with multiple elements still poses challenges.This paper designs an algorithm that integrates global and local planning to apply to the wild environmental path pla...The path planning problem of complex wild environment with multiple elements still poses challenges.This paper designs an algorithm that integrates global and local planning to apply to the wild environmental path planning.The modeling process of wild environment map is designed.Three optimization strategies are designed to improve the A-Star in overcoming the problems of touching the edge of obstacles,redundant nodes and twisting paths.A new weighted cost function is designed to achieve different planning modes.Furthermore,the improved dynamic window approach(DWA)is designed to avoid local optimality and improve time efficiency compared to traditional DWA.For the necessary path re-planning of wild environment,the improved A-Star is integrated with the improved DWA to solve re-planning problem of unknown and moving obstacles in wild environment with multiple elements.The improved fusion algorithm effectively solves problems and consumes less time,and the simulation results verify the effectiveness of improved algorithms above.展开更多
With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality st...With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality stability.To address the challenge that existing partitioning methods are inad-equate for the planning and operation needs of active distribution networks under frequently changing power flow conditions,a three-stage dynamic partitioning approach is proposed based on an im-proved sand cat swarm optimization(ISCSO)algorithm.Firstly,a comprehensive dynamic partitio-ning index is developed by integrating both structural and functional metrics,including modularity,voltage regulation capability,and regional renewable energy accommodation capacity.Secondly,to overcome the limitations of the conventional sand cat swarm optimization,namely its weak global ex-ploration ability and tendency to fall into local optima in the later optimization stages,chaotic map-ping is employed to initialize a uniformly distributed population.A nonlinear sensitivity mechanism is introduced to balance global exploration and local exploitation,alongside the design of a particle encoding and position updating scheme tailored for dynamic partitioning.Furthermore,a‘state re-tention-local adjustment-global reconstruction’partitioning structure is developed.To avoid unnec-essary partition changes under minor source-load fluctuations,the concept of overlapping nodes is introduced,enabling fine-tuned adjustments under such conditions.Finally,two experimental sce-narios are designed to validate the proposed method.Simulation results demonstrate strong electrical coupling performance and show that the method enhances voltage regulation and renewable energy integration capabilities across regions.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canist...As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.展开更多
This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully i...This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully integrated optimisation framework is developed accordingly,combining a single-objective Genetic Algorithm(GA)for design parameter generation,Computer-Aided Geometric Design(CAGD)for the creation of hull geometries and associated fluid domains,and a Reynolds-Averaged Navier-Stokes(RANS)solver for evaluating hydrodynamic performance metrics.This unified approach eliminates manual intervention,enabling automated determination of optimal hull configurations.Three distinct optimisation problems are addressed using the proposed methodology.First,the drag minimisation of a reference afterbody geometry(A1)at zero angle of attack is performed under constraints of fixed length and internal volume for various flow velocities spanning the range from 0.5 to 15 m/s.Second,the lift-to-drag ratio of A1 is maximised at a 6°angle of attack,maintaining constant total length and internal volume.Third,delivered power is minimised for A1 at a 0°angle of attack.The comparative analysis of results from all three optimisation cases reveals hull shapes with practical design significance.Notably,the shape optimised for minimum delivered power outperforms the other two across a range of velocities.Specifically,it achieves reductions in required power by 7.6%,7.8%,10.2%,and 13.04%at velocities of 0.5,1.0,1.5,and 2.152 m/s,respectively.展开更多
Ocean bottom node(OBN)data acquisition is the main development direction of marine seismic exploration;it is widely promoted,especially in shallow sea environments.However,the OBN receivers may move several times beca...Ocean bottom node(OBN)data acquisition is the main development direction of marine seismic exploration;it is widely promoted,especially in shallow sea environments.However,the OBN receivers may move several times because they are easily affected by tides,currents,and other factors in the shallow sea environment during long-term acquisition.If uncorrected,then the imaging quality of subsequent processing will be affected.The conventional secondary positioning does not consider the case of multiple movements of the receivers,and the accuracy of secondary positioning is insufficient.The first arrival wave of OBN seismic data in shallow ocean mainly comprises refracted waves.In this study,a nonlinear model is established in accordance with the propagation mechanism of a refracted wave and its relationship with the time interval curve to realize the accurate location of multiple receiver movements.In addition,the Levenberg-Marquart algorithm is used to reduce the influence of the first arrival pickup error and to automatically detect the receiver movements,identifying the accurate dynamic relocation of the receivers.The simulation and field data show that the proposed method can realize the dynamic location of multiple receiver movements,thereby improving the accuracy of seismic imaging and achieving high practical value.展开更多
Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinfor...Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.展开更多
The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbit...The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.展开更多
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi...The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from N...This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.展开更多
Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led...Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.展开更多
Pricing strategies can have a huge impact on a company’s success. This paper focuses on the advantages and disadvantages of using artificial intelligence in dynamic pricing strategies. A good understanding of the pos...Pricing strategies can have a huge impact on a company’s success. This paper focuses on the advantages and disadvantages of using artificial intelligence in dynamic pricing strategies. A good understanding of the possible benefits and challenges will help companies to understand the impact of their chosen pricing strategies. AI-driven Dynamic pricing has great opportunities to increase a firm’s profits. Firms can benefit from personalized pricing based on personal behavior and characteristics, as well as cost reduction by increasing efficiency and reducing the need to use manual work and automation. However, AI-driven dynamic rewarding can have a negative impact on customers’ perception of trust, fairness and transparency. Since price discrimination is used, ethical issues such as privacy and equity may arise. Understanding the businesses and customers that determine pricing strategy is so important that one cannot exist without the other. It will provide a comprehensive overview of the main advantages and disadvantages of AI-assisted dynamic pricing strategy. The main objective of this research is to uncover the most notable advantages and disadvantages of implementing AI-enabled dynamic pricing strategies. Future research can extend the understanding of algorithmic pricing through case studies. In this way, new, practical implications can be developed in the future. It is important to investigate how issues related to customers’ trust and feelings of unfairness can be mitigated, for example by price framing.展开更多
To realize automatic modeling and dynamic simulation of the educational assembling-type robot with open structure, a general dynamic model for the educational assembling-type robot and a fast simulation algorithm are ...To realize automatic modeling and dynamic simulation of the educational assembling-type robot with open structure, a general dynamic model for the educational assembling-type robot and a fast simulation algorithm are put forward. First, the educational robot system is abstracted to a multibody system and a general dynamic model of the educational robot is constructed by the Newton-Euler method. Then the dynamic model is simplified by a combination of components with fixed connections according to the structural characteristics of the educational robot. Secondly, in order to obtain a high efficiency simulation algorithm, based on the sparse matrix technique, the augmentation algorithm and the direct projective constraint stabilization algorithm are improved. Finally, a numerical example is given. The results show that the model and the fast algorithm are valid and effective. This study lays a dynamic foundation for realizing the simulation platform of the educational robot.展开更多
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estima...Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.展开更多
Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the ...Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments.展开更多
Sea ice concentration is an important parameter for polar sea ice monitoring. Based on 89 GHz AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) data, a gridded high-resolution passive microw...Sea ice concentration is an important parameter for polar sea ice monitoring. Based on 89 GHz AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) data, a gridded high-resolution passive microwave sea ice concentration product can be obtained using the ASI (the Arctic Radiation And Turbulence Interaction Study (ARTIST) Sea Ice) retrieval algorithm. Instead of using fixed-point values, we developed ASi algorithm based on daily changed tie points, called as the dynamic tie point ASI algorithm in this study. Here the tie points are expressed as the brightness temperature polarization difference of open water and 100% sea ice. In 2010, the yearly-averaged tie points of open water and sea ice in Arctic are estimated to be 50.8 K and 7.8 K, respectively. It is confirmed that the sea ice concentrations retrieved by the dynamic tie point ASI algorithm can increase (decrease) the sea ice concentrations in low-value (high-value) areas. This improved the sea ice concentrations by present retrieval algorithm from microwave data to some extent. Comparing with the products using fixed tie points, the sea ice concentrations retrieved from AMSR-E data by using the dynamic tie point ASI algorithm are closer to those obtained from MODIS (Moderate-resolution Imaging Spectroradiometer) data. In 40 selected cloud-free sample regions, 95% of our results have smaller mean differences and 75% of our results have lower root mean square (RMS) differences compare with those by the fixed tie points.展开更多
An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antib...An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antibody's fitness and setting the dynamic threshold value. Numerical experiments show that compared with the genetic algorithm and the originally real-valued coding artificial immune algorithm, the improved algorithm possesses high speed of convergence and good performance for preventing premature convergence.展开更多
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金Industry-University-Research Cooperation Fund Project of the Eighth Research Institute of China Aerospace Science and Technology Corporation(No.USCAST2022-11)。
文摘The path planning problem of complex wild environment with multiple elements still poses challenges.This paper designs an algorithm that integrates global and local planning to apply to the wild environmental path planning.The modeling process of wild environment map is designed.Three optimization strategies are designed to improve the A-Star in overcoming the problems of touching the edge of obstacles,redundant nodes and twisting paths.A new weighted cost function is designed to achieve different planning modes.Furthermore,the improved dynamic window approach(DWA)is designed to avoid local optimality and improve time efficiency compared to traditional DWA.For the necessary path re-planning of wild environment,the improved A-Star is integrated with the improved DWA to solve re-planning problem of unknown and moving obstacles in wild environment with multiple elements.The improved fusion algorithm effectively solves problems and consumes less time,and the simulation results verify the effectiveness of improved algorithms above.
基金Supported by the Technology Project of State Grid Corporation Headquarters(No.5100-202322029A-1-1-ZN)the 2024 Youth Science Foun-dation Project(No.62303006).
文摘With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality stability.To address the challenge that existing partitioning methods are inad-equate for the planning and operation needs of active distribution networks under frequently changing power flow conditions,a three-stage dynamic partitioning approach is proposed based on an im-proved sand cat swarm optimization(ISCSO)algorithm.Firstly,a comprehensive dynamic partitio-ning index is developed by integrating both structural and functional metrics,including modularity,voltage regulation capability,and regional renewable energy accommodation capacity.Secondly,to overcome the limitations of the conventional sand cat swarm optimization,namely its weak global ex-ploration ability and tendency to fall into local optima in the later optimization stages,chaotic map-ping is employed to initialize a uniformly distributed population.A nonlinear sensitivity mechanism is introduced to balance global exploration and local exploitation,alongside the design of a particle encoding and position updating scheme tailored for dynamic partitioning.Furthermore,a‘state re-tention-local adjustment-global reconstruction’partitioning structure is developed.To avoid unnec-essary partition changes under minor source-load fluctuations,the concept of overlapping nodes is introduced,enabling fine-tuned adjustments under such conditions.Finally,two experimental sce-narios are designed to validate the proposed method.Simulation results demonstrate strong electrical coupling performance and show that the method enhances voltage regulation and renewable energy integration capabilities across regions.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金supported by National Natural Science Foundation of China(Grant No.92266201).
文摘As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.
文摘This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully integrated optimisation framework is developed accordingly,combining a single-objective Genetic Algorithm(GA)for design parameter generation,Computer-Aided Geometric Design(CAGD)for the creation of hull geometries and associated fluid domains,and a Reynolds-Averaged Navier-Stokes(RANS)solver for evaluating hydrodynamic performance metrics.This unified approach eliminates manual intervention,enabling automated determination of optimal hull configurations.Three distinct optimisation problems are addressed using the proposed methodology.First,the drag minimisation of a reference afterbody geometry(A1)at zero angle of attack is performed under constraints of fixed length and internal volume for various flow velocities spanning the range from 0.5 to 15 m/s.Second,the lift-to-drag ratio of A1 is maximised at a 6°angle of attack,maintaining constant total length and internal volume.Third,delivered power is minimised for A1 at a 0°angle of attack.The comparative analysis of results from all three optimisation cases reveals hull shapes with practical design significance.Notably,the shape optimised for minimum delivered power outperforms the other two across a range of velocities.Specifically,it achieves reductions in required power by 7.6%,7.8%,10.2%,and 13.04%at velocities of 0.5,1.0,1.5,and 2.152 m/s,respectively.
基金funded by the National Natural Science Foundation of China (No.42074140)the Scientific Research and Technology Development Project of China National Petroleum Corporation (No.2021ZG02)。
文摘Ocean bottom node(OBN)data acquisition is the main development direction of marine seismic exploration;it is widely promoted,especially in shallow sea environments.However,the OBN receivers may move several times because they are easily affected by tides,currents,and other factors in the shallow sea environment during long-term acquisition.If uncorrected,then the imaging quality of subsequent processing will be affected.The conventional secondary positioning does not consider the case of multiple movements of the receivers,and the accuracy of secondary positioning is insufficient.The first arrival wave of OBN seismic data in shallow ocean mainly comprises refracted waves.In this study,a nonlinear model is established in accordance with the propagation mechanism of a refracted wave and its relationship with the time interval curve to realize the accurate location of multiple receiver movements.In addition,the Levenberg-Marquart algorithm is used to reduce the influence of the first arrival pickup error and to automatically detect the receiver movements,identifying the accurate dynamic relocation of the receivers.The simulation and field data show that the proposed method can realize the dynamic location of multiple receiver movements,thereby improving the accuracy of seismic imaging and achieving high practical value.
基金This research was funded by the Project of the National Natural Science Foundation of China,Grant Number 62106283.
文摘Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.
基金supported by National Natural Science Foundation of China (Nos. 11975068 and 11925501)the National Key R&D Program of China (No. 2022YFE03090000)the Fundamental Research Funds for the Central Universities (No. DUT22ZD215)。
文摘The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.
基金supported by National Natural Science Foundation of China(Grant Nos.62376089,62302153,62302154,62202147)the key Research and Development Program of Hubei Province,China(Grant No.2023BEB024).
文摘The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
文摘This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.
文摘Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.
文摘Pricing strategies can have a huge impact on a company’s success. This paper focuses on the advantages and disadvantages of using artificial intelligence in dynamic pricing strategies. A good understanding of the possible benefits and challenges will help companies to understand the impact of their chosen pricing strategies. AI-driven Dynamic pricing has great opportunities to increase a firm’s profits. Firms can benefit from personalized pricing based on personal behavior and characteristics, as well as cost reduction by increasing efficiency and reducing the need to use manual work and automation. However, AI-driven dynamic rewarding can have a negative impact on customers’ perception of trust, fairness and transparency. Since price discrimination is used, ethical issues such as privacy and equity may arise. Understanding the businesses and customers that determine pricing strategy is so important that one cannot exist without the other. It will provide a comprehensive overview of the main advantages and disadvantages of AI-assisted dynamic pricing strategy. The main objective of this research is to uncover the most notable advantages and disadvantages of implementing AI-enabled dynamic pricing strategies. Future research can extend the understanding of algorithmic pricing through case studies. In this way, new, practical implications can be developed in the future. It is important to investigate how issues related to customers’ trust and feelings of unfairness can be mitigated, for example by price framing.
基金Hexa-Type Elites Peak Program of Jiangsu Province(No.2008144)Qing Lan Project of Jiangsu ProvinceFund for Excellent Young Teachers of Southeast University
文摘To realize automatic modeling and dynamic simulation of the educational assembling-type robot with open structure, a general dynamic model for the educational assembling-type robot and a fast simulation algorithm are put forward. First, the educational robot system is abstracted to a multibody system and a general dynamic model of the educational robot is constructed by the Newton-Euler method. Then the dynamic model is simplified by a combination of components with fixed connections according to the structural characteristics of the educational robot. Secondly, in order to obtain a high efficiency simulation algorithm, based on the sparse matrix technique, the augmentation algorithm and the direct projective constraint stabilization algorithm are improved. Finally, a numerical example is given. The results show that the model and the fast algorithm are valid and effective. This study lays a dynamic foundation for realizing the simulation platform of the educational robot.
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.
基金supported by the National Natural Science Foundation of China (61302188)the Nanjing University of Science and Technology Research Foundation (2010ZDJH05)
文摘Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.
基金This work was supported by UK EPSRC(No.EP/E060722/01)Broil FAPESP(Proc.04/04289-6).
文摘Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments.
基金The Global Change Research Program of China under contract No.2015CB953901the National Natural Science Foundation of China under contract Nos 41330960 and 41276193
文摘Sea ice concentration is an important parameter for polar sea ice monitoring. Based on 89 GHz AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) data, a gridded high-resolution passive microwave sea ice concentration product can be obtained using the ASI (the Arctic Radiation And Turbulence Interaction Study (ARTIST) Sea Ice) retrieval algorithm. Instead of using fixed-point values, we developed ASi algorithm based on daily changed tie points, called as the dynamic tie point ASI algorithm in this study. Here the tie points are expressed as the brightness temperature polarization difference of open water and 100% sea ice. In 2010, the yearly-averaged tie points of open water and sea ice in Arctic are estimated to be 50.8 K and 7.8 K, respectively. It is confirmed that the sea ice concentrations retrieved by the dynamic tie point ASI algorithm can increase (decrease) the sea ice concentrations in low-value (high-value) areas. This improved the sea ice concentrations by present retrieval algorithm from microwave data to some extent. Comparing with the products using fixed tie points, the sea ice concentrations retrieved from AMSR-E data by using the dynamic tie point ASI algorithm are closer to those obtained from MODIS (Moderate-resolution Imaging Spectroradiometer) data. In 40 selected cloud-free sample regions, 95% of our results have smaller mean differences and 75% of our results have lower root mean square (RMS) differences compare with those by the fixed tie points.
文摘An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antibody's fitness and setting the dynamic threshold value. Numerical experiments show that compared with the genetic algorithm and the originally real-valued coding artificial immune algorithm, the improved algorithm possesses high speed of convergence and good performance for preventing premature convergence.