Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of a...Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.展开更多
Simultaneous localization and mapping(SLAM) technology is a research hotspot in the field of intelligent mobile robot, and many researchers have developed many classic systems in the past few decades. However, most of...Simultaneous localization and mapping(SLAM) technology is a research hotspot in the field of intelligent mobile robot, and many researchers have developed many classic systems in the past few decades. However, most of the existing SLAM methods assume that the environment of the robot is static, which results in the performance of the system being greatly reduced in the dynamic environment. To solve this problem, a new dynamic object detection method based on point cloud motion analysis is proposed and incorporated into ORB-SLAM2. First, the method is regarded as a preprocessing stage, detecting moving objects in the scene, and then removing the moving objects to enhance the performance of the SLAM system. Experiments performed on a public RGB-D dataset show that the motion cancellation method proposed in this paper can effectively improve the performance of ORB-SLAM2 in a highly dynamic environment.展开更多
A variational method is developed to retrieve winds in the first step and then thermodynamic fields in the second step from Doppler radar observations. In the first step, wind fields are retrieved at two time levels: ...A variational method is developed to retrieve winds in the first step and then thermodynamic fields in the second step from Doppler radar observations. In the first step, wind fields are retrieved at two time levels: the beginning and ending times of the data assimilation period, simultaneously from two successive volume scans by using the weak form constraints provided by the mass continuity and vorticity equations. As the retrieved wind fields are expressed by Legendre polynomial expansions at the beginning and ending times, the time tendency term in the vorticity equation can be conveniently formulated, and the retrieved winds can be compared with the radar observed radial winds in the cost function at the precise time and position of each radar beam. In the second step, the perturbation pressure and temperature fields at the middle time are then derived from the retrieved wind fields and the velocity time tendency by using the weak form constraints provided by the three momentum equations. The merits of the new method are demonstrated by numerical experiments with simulated radar observations and compared with the traditional least squares methods which consider neither the precise observation times and positions nor the velocity time tendency. The new method is also applied to real radar data for a heavy rainfall event during the 2001 Meiyu season in China.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
Speedometer identification has been researched for many years.The common approaches to that problem are usually based on image subtraction,which does not adapt to image offsets caused by camera vibration.To cope with ...Speedometer identification has been researched for many years.The common approaches to that problem are usually based on image subtraction,which does not adapt to image offsets caused by camera vibration.To cope with the rapidity,robust and accurate requirements of this kind of work in dynamic scene,a fast speedometer identification algorithm is proposed,it utilizes phase correlation method based on regional entire template translation to estimate the offset between images.In order to effectively reduce unnecessary computation and false detection rate,an improved linear Hough transform method with two optimization strategies is presented for pointer line detection.Based on VC++ 6.0 software platform with OpenCV library,the algorithm performance under experiments has shown that it celerity and precision.展开更多
The fully anisotropic molecular overall tumbling model with methyl conformation jumps internal rotation among three equivalent sites is proposed,the overall tumbling rotation rates and the methyl internal rotation rat...The fully anisotropic molecular overall tumbling model with methyl conformation jumps internal rotation among three equivalent sites is proposed,the overall tumbling rotation rates and the methyl internal rotation rates of ponicidin are computed with this model from ~C relaxation parameters.展开更多
The weakly compressible smooth particle hydrodynamics(WCSPH)model is studied to address the boundary pressure instability of the SPH method,resulting in the development of the SPH method with improved dynamic boundary...The weakly compressible smooth particle hydrodynamics(WCSPH)model is studied to address the boundary pressure instability of the SPH method,resulting in the development of the SPH method with improved dynamic boundary conditions.This method employs the‘fan’search method for free surface detection,effectively identifying cavity interface particles with diameters smaller than the support domain’s radius,thereby indirectly enhancing the algorithm’s accuracy.On this basis,an improved dynamic boundary condition is proposed by updating the boundary particle pressure calculation scheme to achieve a more stable and continuous pressure field,thereby effectively preventing particles from penetrating the boundary.The SPH method with improved dynamic boundary conditions is used to simulate typical high-speed impact problems such as wedge entry and dam break.The simulation results are in good agreement with the experimental data and other numerical results.展开更多
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV...Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.展开更多
This paper proposes an improved Dynamic Bandwidth Allocation (DBA) algorithm for EPON, which combines static and traditional dynamic allocation schemes. Simulation result shows that the proposed algorithm may effectiv...This paper proposes an improved Dynamic Bandwidth Allocation (DBA) algorithm for EPON, which combines static and traditional dynamic allocation schemes. Simulation result shows that the proposed algorithm may effectively improve the performance of packet delay.展开更多
With the increasing presence of intermittent energy resources in microgrids,it is difficult to precisely predict the output of renewable resources and their load demand.In order to realize the economical operations of...With the increasing presence of intermittent energy resources in microgrids,it is difficult to precisely predict the output of renewable resources and their load demand.In order to realize the economical operations of the system,an energy management method based on a model predictive control(MPC)and dynamic programming(DP)algorithm is proposed.This method can reasonably distribute the energy of the battery,fuel cell,electrolyzer and external grid,and maximize the output of the distributed power supply while ensuring the power balance and cost optimization of the system.Based on an ultra-shortterm forecast,the output power of the photovoltaic array and the demand power of the system load are predicted.The offline global optimization of traditional dynamic programming is replaced by the repeated rolling optimization in a limited period of time to obtain power values of each unit in the energy storage system.Compared with the traditional DP,MILP-MPC and the logic based real-time management method,the proposed energy management method is proved to be feasible and effective.展开更多
Proton-induced scattering of 238U nuclei,with spheroidal deformations at beam energies above 100 MeV,is simulated using an improved quantum molecular dynamics model.The angular distribution of the deflected protons is...Proton-induced scattering of 238U nuclei,with spheroidal deformations at beam energies above 100 MeV,is simulated using an improved quantum molecular dynamics model.The angular distribution of the deflected protons is highly sensitive to the orientation of the symmetrical long axis of the target nuclei with respect to the beam direction.As a result,in reverse kinematic reactions,an orientation dichroism effect is predicted,implying that the absorption rate of the 238U beam by a proton target discerns between the parallel and perpendicular orientations of the deformed 238U nuclei.展开更多
基金supported in part by the National Natural Science Foundation of China(61873106,62303109)Start-Up Research Fund of Southeast University(RF1028623002)Shenzhen Science and Technology Program(JCYJ20230807114609019)
文摘Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.
基金supported by the National Natural Science Foundation of China (No.61876167)the Natural Science Foundation of Zhejiang Province (No.LY20F030017)。
文摘Simultaneous localization and mapping(SLAM) technology is a research hotspot in the field of intelligent mobile robot, and many researchers have developed many classic systems in the past few decades. However, most of the existing SLAM methods assume that the environment of the robot is static, which results in the performance of the system being greatly reduced in the dynamic environment. To solve this problem, a new dynamic object detection method based on point cloud motion analysis is proposed and incorporated into ORB-SLAM2. First, the method is regarded as a preprocessing stage, detecting moving objects in the scene, and then removing the moving objects to enhance the performance of the SLAM system. Experiments performed on a public RGB-D dataset show that the motion cancellation method proposed in this paper can effectively improve the performance of ORB-SLAM2 in a highly dynamic environment.
文摘A variational method is developed to retrieve winds in the first step and then thermodynamic fields in the second step from Doppler radar observations. In the first step, wind fields are retrieved at two time levels: the beginning and ending times of the data assimilation period, simultaneously from two successive volume scans by using the weak form constraints provided by the mass continuity and vorticity equations. As the retrieved wind fields are expressed by Legendre polynomial expansions at the beginning and ending times, the time tendency term in the vorticity equation can be conveniently formulated, and the retrieved winds can be compared with the radar observed radial winds in the cost function at the precise time and position of each radar beam. In the second step, the perturbation pressure and temperature fields at the middle time are then derived from the retrieved wind fields and the velocity time tendency by using the weak form constraints provided by the three momentum equations. The merits of the new method are demonstrated by numerical experiments with simulated radar observations and compared with the traditional least squares methods which consider neither the precise observation times and positions nor the velocity time tendency. The new method is also applied to real radar data for a heavy rainfall event during the 2001 Meiyu season in China.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
基金Supported by the National Natural Science Foundation of China (61004139)Beijing Municipal Natural Science Foundation(4101001)2008 Yangtze Fund Scholar and Innovative Research Team Development Schemes of Ministry of Education
文摘Speedometer identification has been researched for many years.The common approaches to that problem are usually based on image subtraction,which does not adapt to image offsets caused by camera vibration.To cope with the rapidity,robust and accurate requirements of this kind of work in dynamic scene,a fast speedometer identification algorithm is proposed,it utilizes phase correlation method based on regional entire template translation to estimate the offset between images.In order to effectively reduce unnecessary computation and false detection rate,an improved linear Hough transform method with two optimization strategies is presented for pointer line detection.Based on VC++ 6.0 software platform with OpenCV library,the algorithm performance under experiments has shown that it celerity and precision.
文摘The fully anisotropic molecular overall tumbling model with methyl conformation jumps internal rotation among three equivalent sites is proposed,the overall tumbling rotation rates and the methyl internal rotation rates of ponicidin are computed with this model from ~C relaxation parameters.
基金supported by the National Natural Science Foundation of China(Grant No.52071094).
文摘The weakly compressible smooth particle hydrodynamics(WCSPH)model is studied to address the boundary pressure instability of the SPH method,resulting in the development of the SPH method with improved dynamic boundary conditions.This method employs the‘fan’search method for free surface detection,effectively identifying cavity interface particles with diameters smaller than the support domain’s radius,thereby indirectly enhancing the algorithm’s accuracy.On this basis,an improved dynamic boundary condition is proposed by updating the boundary particle pressure calculation scheme to achieve a more stable and continuous pressure field,thereby effectively preventing particles from penetrating the boundary.The SPH method with improved dynamic boundary conditions is used to simulate typical high-speed impact problems such as wedge entry and dam break.The simulation results are in good agreement with the experimental data and other numerical results.
基金National Natural Science Foundation of China(Grant No.52472417)to provide fund for conducting experiments.
文摘Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.
文摘This paper proposes an improved Dynamic Bandwidth Allocation (DBA) algorithm for EPON, which combines static and traditional dynamic allocation schemes. Simulation result shows that the proposed algorithm may effectively improve the performance of packet delay.
基金supported in part by the National Natural Science Foundation of China under Grant 52377123 and 51977181in part by the Natural Science Foundation of Sichuan Province under Grant 2022NSFSC0027in part by the Fok Ying-Tong Education Foundation of China under Grant 171104。
文摘With the increasing presence of intermittent energy resources in microgrids,it is difficult to precisely predict the output of renewable resources and their load demand.In order to realize the economical operations of the system,an energy management method based on a model predictive control(MPC)and dynamic programming(DP)algorithm is proposed.This method can reasonably distribute the energy of the battery,fuel cell,electrolyzer and external grid,and maximize the output of the distributed power supply while ensuring the power balance and cost optimization of the system.Based on an ultra-shortterm forecast,the output power of the photovoltaic array and the demand power of the system load are predicted.The offline global optimization of traditional dynamic programming is replaced by the repeated rolling optimization in a limited period of time to obtain power values of each unit in the energy storage system.Compared with the traditional DP,MILP-MPC and the logic based real-time management method,the proposed energy management method is proved to be feasible and effective.
基金Supported by the National Natural Science Foundation of China(11875174,11890712,11965004,11947413,U1867212,11711540016)Natural Science Foundation of Guangxi(2016GXNSFFA380001,2017GXNSFGA198001)Foundation of Guangxi innovative team and distinguished scholar in institutions of higher education。
文摘Proton-induced scattering of 238U nuclei,with spheroidal deformations at beam energies above 100 MeV,is simulated using an improved quantum molecular dynamics model.The angular distribution of the deflected protons is highly sensitive to the orientation of the symmetrical long axis of the target nuclei with respect to the beam direction.As a result,in reverse kinematic reactions,an orientation dichroism effect is predicted,implying that the absorption rate of the 238U beam by a proton target discerns between the parallel and perpendicular orientations of the deformed 238U nuclei.