期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Dynamic micro-macro fatigue fracture under cyclic direct tensile impacts in brittle rocks
1
作者 LI Xiaozhao YAN Huaiwei +1 位作者 LUO Qiulin QI Chengzhi 《Journal of Mountain Science》 2025年第5期1848-1858,共11页
The fatigue fracture under cyclic dynamic direct tensions of brittle rock is an important mechanical characteristic index for the evaluation of geological disasters and underground engineering safety.However,most stud... The fatigue fracture under cyclic dynamic direct tensions of brittle rock is an important mechanical characteristic index for the evaluation of geological disasters and underground engineering safety.However,most studies focus on macroscopic fracture mechanical properties,and the mechanism linking the macroscopic fracture with the microcrack growth during the cyclic dynamic direct tensile loading of brittle rocks is rarely studied.In this paper,a micro-macro fracture model explaining the stress-strain constitutive relationship is established at the last impact failure after being subjected to multiple cyclic direct tensile impacts of brittle rocks.This model is based on the wing crack extension model under direct tensile loading,the quasi-static and dynamic fracture toughness relationship,the suggested crack rate and strain rate relationship,the relationship of damage and dynamic tensile fatigue life N,the relationship of dynamic fracture toughness and dynamic tensile fatigue life N.The variations of dynamic mechanical properties of rocks with dynamic tensile fatigue life for different initial crack sizes and angles within the rocks are further discussed.The compressive strength,elastic modulus,crack initiation stress,limit crack extension length and crack extension rate descend and the failure strain ascends with an increment of dynamic tensile fatigue life in rocks.This study's results provide help for the safety and stability of the underground surrounding rocks under blasting working or seismic disasters. 展开更多
关键词 Brittle rock Micro-macro fracture Cyclic dynamic direct tensile impact Fatigue life Constitutive relationship
原文传递
Dynamic Mechanical Behavior and Failure Characteristics of Sandstone Subjected to Freeze-thaw Treatment at Different Strain Rates
2
作者 ZHANG Chunyang TAN Tao +1 位作者 LI Xiaoshuang ZHANG Yuchao 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1262-1274,共13页
The influence of FT(freeze-thaw)cycles and average strain rate on the dynamic impact performance,energy evolution characteristics,and failure behavior of sandstone was studied through dynamic impact tests.Results disp... The influence of FT(freeze-thaw)cycles and average strain rate on the dynamic impact performance,energy evolution characteristics,and failure behavior of sandstone was studied through dynamic impact tests.Results displayed that the FT damage process of samples can be divided into three stages based on the changes in weight,porosity,and P-wave velocity.The dynamic peak strength,dynamic elastic modulus,and strength ratio decreased with increasing FT cycles,and increased with increasing average strain rate.Moreover,the average strain rate reduced the influence of FT cycles on dynamic peak strength.In general,the incident energy,reflected energy and dissipated energy increased with increasing average strain rate,the transmitted energy was negligibly affected by the average strain rate,and the energy dissipation ratio decreased with increasing average strain rate.In addition,the influence of FT cycles on each type of energy and energy dissipation ratio during sample failure was smaller than that of average strain rate.The average size of fragments can accurately demonstrate the impact of FT damage and average strain rate on dynamic peak strength and failure mode,and quantitatively evaluate the sample’s fragmentation degree.Fractal dimension varies with FT cycles and average strain rate,and the threshold is between 148.30 and 242.57 s^(-1).If the average strain rate is in the threshold range,the relationship between the fractal dimension and dynamic peak strength is more regular,otherwise,it will become complicated.The results reveal the dynamic failure mechanism of white sandstone samples,providing assistance for dynamic rock-breaking and disaster prevention in cold regions. 展开更多
关键词 white sandstone FT cycles dynamic impact tests dynamic mechanical characteristics energy conversion fractal dimension of fragments
原文传递
Dynamic impact simulation tests of deep roadways affected by high stress and fault slip
3
作者 Qi Wang Yuncai Wang +3 位作者 Zhenhua Jiang Hongpu Kang Chong Zhang Bei Jiang 《International Journal of Mining Science and Technology》 2025年第4期519-537,共19页
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ... As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed. 展开更多
关键词 Deep roadway dynamic impact simulation High stress Fault slip Occurrence law
在线阅读 下载PDF
Deterioration mechanism and dynamic constitutive model of coal-rock assemblages considering chemical corrosion and impact damage
4
作者 Jianhang Chen Banquan Zeng +7 位作者 Wuyan Xu Kun Wang Peng Liu Songsong Hu Shiji Wang Zhixiang Song Shaokang Wu Xuyang Bai 《International Journal of Mining Science and Technology》 2025年第6期837-861,共25页
To reveal the deterioration mechanism of coal-rock assemblages under chemical corrosion and dynamic loading,chemical corrosion and dynamic impact experiments were conducted.Under different chemical corrosion condition... To reveal the deterioration mechanism of coal-rock assemblages under chemical corrosion and dynamic loading,chemical corrosion and dynamic impact experiments were conducted.Under different chemical corrosion conditions,the weakening characteristics,observable characteristics,softening characteristics of the dynamic parameters,dynamic failure characteristics,dynamic failure forms and dynamic microscopic characteristics were analyzed.Under each corrosion condition,the dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity tended to decrease with immersing time.The dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity exhibited an inverted U-shaped trend.Under dynamic impact,the failure process of acidly corroded samples can be divided into the following stages:the initial stage,elastic energy accumulation stage,local failure of coal and secondary rock crack expansion stage,coal fragment ejection stage,rock spalling stage and complete instability stage.Under dynamic impact,failure modes exist:coal crushing failure,rock fragmenting failure,rock splitting failure and full splitting failure.After impact failure,sample fragments are distributed in powder,granular,cone and block forms.Based on Zhu-Wang-Tang nonlinear viscoelastic properties,a model considering chemical corrosion and impact damage was proposed.The combined effects of chemical and impact-induced damage on the dynamic mechanical properties of coal-rock assemblages were systematically analyzed. 展开更多
关键词 Coal-rock assemblage Chemical corrosion dynamic impact Deterioration characteristics dynamic constitutive model
在线阅读 下载PDF
Dynamic characteristics of anisotropic shale and rock-breaking efficiency of the axe-shaped tooth under different impact loadbedding angles
5
作者 Yan Xi Yu Yao +3 位作者 Hong-Ao Zhao Qian Li Jun Li Ying-Chun Chen 《Petroleum Science》 2025年第5期2020-2041,共22页
Percussion drilling technology can be used to increase the rate of penetration in deep shale reservoirs,but the interaction mechanism among impact loads,drilling teeth and rock has not been sufficiently investigated.F... Percussion drilling technology can be used to increase the rate of penetration in deep shale reservoirs,but the interaction mechanism among impact loads,drilling teeth and rock has not been sufficiently investigated.For this reason,shales with different bedding angles are used to carry out impact compression and tensile experiments as well as the rock-breaking experiments by single axe-shaped tooth,the variation of dynamic strengths,rock failure characteristics,fractal dimensions,and tensile/compression ratios under different load-bedding angles(α)are investigated.Then,the three-dimensional scanning device is used to measure the penetration depth and rock-breaking volume under different load-bedding angles.The results show that with the increase of load-bedding angle(0°-90°),the compressive strength decreases and then increases,with the lowest strength atα=45°and the highest strength atα=0°;the tensile strength decreases and then increases,with the lowest strength nearα=30°and the highest strength atα=90°.With the growing impact rate,the effect of load-bedding angle on dynamic compressive strength decreases,and the effect on dynamic tensile strength becomes more significant.When the impact velocity is high(≥8.0 m/s),the tensile-compressive ratio first decreases and then increases,and both reach a minimum at a load-bedding angle of 30°and a maximum at 60°.With the increasing of the load-bedding angle,the depth of tooth penetration increases and then decreases,and the highest depth of tooth penetration and the highest energy absorption efficiency are achieved atα=45°;the width of the impact pit increases and then decreases,and the maximum width value is achieved atα=30°,with the smallest value of the specific work value of the rock-breaking.The results have significant reference value for improving the rock-breaking efficiency of percussion drilling in deep anisotropic formations. 展开更多
关键词 Anisotropic shale dynamic impact Axe-shaped teeth Rock-breaking mechanism
原文传递
Enhanced dynamic impact resistance of UHMWPE fabrics impregnated with double-thickening shear thickening fluid
6
作者 Yiting Meng Heyu Chen +3 位作者 Hengyu Lin Zhehong Lu Yubing Hu Yanan Zhang 《Defence Technology(防务技术)》 2025年第7期321-333,共13页
Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by ad... Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by adding carboxyl-modified silica(C-SiO2),PAA,and CaCl_(2) to achieve higher viscosity over 25℃.The rheological behavior of C-SiO_(2)-based shear thickening fluid(CS-STF)was investigated at a temperature range of 25–55℃.Unlike SiO_(2)-based STF,which exhibits single-step thickening and a negative correlation between viscosity and temperature.As the C-SiO_(2) content was 41%(w/w)and the mass ratio of PAA:CaCl_(2):C-SiO_(2) was 3:1:10,the CS-STF displayed a double-thickening behavior,and the peak viscosity reached 1330 Pa·s at 35℃.From the yarn pull-out test,the inter-yarn force was significantly increased with the increasing CS-STF content.Treating UHMWPE fabrics with CS-STF improved the impact resistance effectively.In the blunt impact test,the U-CS fabrics with high CS-STF content(121.45 wt%)experienced penetration failure under high impact energy(18 J)due to stress concentration caused by the shear thickening behavior.The knife stabbing test demonstrated that U-CS fabrics with appropriate content(88.38 wt%)have the best stabbing resistance in various impact energies.Overall,this study proposed a high-performence STF showing double-thickening and enhancing shear-thickening behavior at a wide temperature range,the composite fabrics with the performance of resisting both the blunt and stab impact had broad application prospects in the field of personal protection. 展开更多
关键词 Shear thickening fluid Double-thickening behavior UHMWPE fabrics dynamic impact resistance
在线阅读 下载PDF
Evaluation of tidal stream energy and its impacts on surrounding dynamics in the Eastern Region of Pingtan Island, China 被引量:4
7
作者 武贺 王鑫 +2 位作者 王兵振 白杨 王培涛 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第6期1319-1328,共10页
Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal ener... Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southem cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research. 展开更多
关键词 tidal stream energy Pingtan Island numerical simulation dynamic impacts
原文传递
Bending Strength of Glass Materials under Strong Dynamic Impact and Its Strain Rate Effects 被引量:1
8
作者 LIU Xiaogen QI Shuang +2 位作者 WEI Shaoshan WAN Detian JIN Chunxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1358-1364,共7页
Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif... Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading. 展开更多
关键词 glass materials strong dynamic impact bending strength strain rate effect dynamic enhancement factor
原文传递
Dynamic impact properties of deep sandstone under thermal-hydraulicmechanical coupling loads
9
作者 CAO Chunhui DING Haonan ZOU Baoping 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2113-2129,共17页
The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To... The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations. 展开更多
关键词 Deep sandstone Thermal-hydraulicmechanical coupling dynamic impact STRESS-STRAIN Failure Modes Polar analysis
原文传递
Experimental crushing behavior and energy absorption of angular gradient honeycomb structures under quasi-static and dynamic compression
10
作者 Jiachen Li Yuchen Wei +2 位作者 Hao Wu Xingyu Shen Mengqi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期47-63,共17页
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and... The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments. 展开更多
关键词 Negative Poisson's ratio Gradient honeycomb structure Quasi-static compression dynamic impact Titanium alloy
在线阅读 下载PDF
Influence of barrier shape on impact dynamics of debris flow entraining a boulder onto rigid barriers
11
作者 ZHAO Yongjie MA Yuangang +4 位作者 LUO Gang SHEN Weigang GAO Guohui ZHAO Meng CHEN Wei 《Journal of Mountain Science》 SCIE CSCD 2024年第12期3971-3985,共15页
Rigid barrier is a straightforward and effective countermeasure widely used for mitigating debris flow.However,in current designs,it remains unclear how to optimize the rigid barrier to enhance its mechanical properti... Rigid barrier is a straightforward and effective countermeasure widely used for mitigating debris flow.However,in current designs,it remains unclear how to optimize the rigid barrier to enhance its mechanical properties.Therefore,this study investigates the influence of the shape of the upstream face of the rigid barrier,referred to as the'barrier shape',on the impact dynamics of debris flow entraining a boulder onto rigid barrier.This study employs a coupled numerical approach involving smoothed particle hydrodynamics(SPH),the discrete element method(DEM),and the finite element method(FEM).The simulation results demonstrate that the barrier shape can affect the mechanical properties of the rigid barrier by altering the interaction mode between the debris flow and the barrier.Compared to vertical and slanted barriers,a curved barrier exhibits superior mechanical properties when subjected to debris flow impact.Furthermore,reducing the slope of the upstream face appropriately proves to be an effective method for enhancing the impact resistance of slanted barriers.The relevant findings from this study can serve as valuable references for the structural optimization of rigid barriers. 展开更多
关键词 Debris flow Rigid barrier Barrier shape Impact dynamics Numerical modelling
原文传递
Dynamic Analysis of Metamorphic Mechanisms with Impact Effects During Configu ation Transformation
12
作者 Yang Zhou Boyan Chang +1 位作者 Guoguang Jin Zhimin Wang 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期466-481,共16页
Metamorphic mechanisms have attracted considerable attention owing to their capability to switch their topology to adapt to different operational tasks.One feature of topological change is the re-contact of different ... Metamorphic mechanisms have attracted considerable attention owing to their capability to switch their topology to adapt to different operational tasks.One feature of topological change is the re-contact of different bodies,which inevitably causes collisions affecting operation accuracy and service life.Consequently,in this study,a collision incidence matrix was introduced to describe the topology of a system involved in collisions,and a method for reducing the closed-loop system to an open-loop system was proposed.The complex movement of the metamorphic mechanism in a changing topology was classified into two different running stages of the source metamorphic mechanism.Based on the relative coordinate method,dynamic modeling of the source metamorphic mechanism considering the impact effects was conducted.Combining the classical collision theory and Newton–Euler equation,the generated impact impulse and the motion after collision were determined.Subsequently,a dynamic analytical method for the full configuration of metamorphic mechanisms was proposed to reflect the changes in the topological structure in the dynamic model.Finally,two typical metamorphic mechanisms used in packaging and spinning were considered as examples to verify the correctness and effectiveness of the proposed method,and their impact characteristics during configuration transformation were analyzed.The proposed analytical method of internal impact for a variable topology process provides effective theoretical guidance for the stability analysis of configuration transformation and structural design aimed at minimizing impacts. 展开更多
关键词 Metamorphic mechanism Configuration transformation Impact dynamics Internal impact Variable topology
在线阅读 下载PDF
EFFICIENT NUMERICAL METHOD FOR DYNAMIC ANALYSIS OF FLEXIBLE ROD HIT BY RIGID BALL 被引量:1
13
作者 徐春铃 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第4期338-344,共7页
Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly... Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly, the discrete singular convolution (DSC) is used for the first time to analyze the impact dynamics. Secondly, the efficiency of various numerical methods for dynamic analysis is explored via an example of a flexible rod hit by a rigid ball. Three numerical methods, including the conventional finite element (FE) method, the DSC algorithm, and the spectral finite element (SFE) method, and one proposed modeling strategy, the improved spectral finite element (ISFE) method, are involved. Numerical results are compared with the known analytical solutions to show their efficiency. It is demonstrated that the proposed ISFE modeling strategy with a proper length of con- ventional FE yields the most accurate contact stress among the four investigated models. It is also found that the DSC algorithm is an alternative method for collision problems. 展开更多
关键词 impact dynamics finite element method discrete singular convolution algorithm spectral finite ele- ment method
在线阅读 下载PDF
Theoretical and experimental study of a compact energy absorption structure
14
作者 WANG Yan-jing SUN Cheng-ming +2 位作者 CHEN Fei-peng YAO Shu-jian SUN Hong-ji 《Journal of Central South University》 2025年第7期2766-2780,共15页
The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study pr... The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study presents a compact energy absorption structure(CE)that integrates the advantages of cutting rings and thin-walled tube modules,offering a solution with the high space utilization and the superior crashworthiness.Through theoretical modeling and experimental validation using a drop-weight test system,we analyzed the dynamic response and energy absorption characteristics of the CE.Comparative analysis with existing structures,namely the cutting shear rings(CSR)energy absorption structure and thin-walled tube structure(TW),revealed that the CE significantly improves specific energy absorption(SEA)by 102.76%and 61.54%,respectively,and optimizes crush force efficiency(CFE)by increasing 8.23%and 5.49%compared to CSR and TW.The innovative design of the CE,featuring deformation gradient and delay response strategies,showcases its potential for practical application in engineering,advancing the field of crashworthiness engineering. 展开更多
关键词 energy absorption structure drop-weight test impact dynamics specific energy absorption crush force efficiency
在线阅读 下载PDF
Nonlinear dynamic analysis of interaction between vehicle and road surfaces for 5-axle heavy truck 被引量:1
15
作者 黎文琼 张建润 +1 位作者 刘晓波 王园 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期405-409,共5页
Based on the analysis of nonlinear geometric characteristics of the suspension systems and tires, a 3D nonlinear dynamic model of a typical heavy truck is established. The impact factors of dynamic tire loads, includi... Based on the analysis of nonlinear geometric characteristics of the suspension systems and tires, a 3D nonlinear dynamic model of a typical heavy truck is established. The impact factors of dynamic tire loads, including the dynamic load stress factors, and the maximal and the minimal vertical dynamic load factors, are used to evaluate the dynamic interaction between heavy vehicles and roads under the condition of random road surface roughness. Matlab/Simulink is used to simulate the nonlinear dynamic system and calculate the impact factors. The effects of different road surface conditions on the safety of vehicle movement and the durability of parts of a vehicle are analyzed, as well as the effects of different structural parameters and different vehicle speeds on road surfaces. The study results provide both the warning limits of road surface roughness and the limits of corresponding dynamic parameters for the 5-axle heavy truck. 展开更多
关键词 5-axle heavy truck nonlinear dynamics dynamic impact factor road surlhce roughness
在线阅读 下载PDF
Dynamic mechanical characteristics and application of constant resistance energy-absorbing supporting material 被引量:15
16
作者 Qi Wang Shuo Xu +3 位作者 Manchao He Bei Jiang Huayong Wei Yue Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期447-458,共12页
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab... In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety. 展开更多
关键词 Constant resistance energy-absorbing Supporting material dynamic impact tests Mechanical characteristics Field application
在线阅读 下载PDF
Test and numerical investigations on static and dynamic characteristics of extra-wide concrete self-anchored suspension bridge under vehicle loads 被引量:8
17
作者 ZHOU Guang-pan LI Ai-qun +1 位作者 LI Jian-hui DUAN Mao-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2382-2395,共14页
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite... The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges. 展开更多
关键词 self-anchored suspension bridge extra-wide girder field test simulation vehicle loads increments distribution damping ratio mode shape dynamic impact coefficient
在线阅读 下载PDF
Partition method for impact dynamics of flexible multibody systems based on contact constraint 被引量:6
18
作者 段玥晨 章定国 洪嘉振 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1393-1404,共12页
The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are con... The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact. 展开更多
关键词 flexible multibody system impact dynamics partition method impulse-momentum method contact constraint
在线阅读 下载PDF
Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge 被引量:6
19
作者 Lipeng An Dejian Li +1 位作者 Peng Yu Peng Yuan 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第4期186-194,共9页
To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle spac... To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle-bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the "set-in-right-position" rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long- span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the "general code for design of highway bridges and culverts (China)". The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle-bridge system. 展开更多
关键词 Long-span continuous bridge Vehicle-bridge coupled system dynamic responseVehicle impact coefficient Vibration comfort
在线阅读 下载PDF
Influence of dynamic pressure on deep underground soft rock roadway support and its application 被引量:5
20
作者 Meng Qingbin Han Lijun +4 位作者 Chen Yanlong Fan Jiadong Wen Shengyong Yu Liyuan Li Hao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期903-912,共10页
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist... Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits. 展开更多
关键词 Deep soft rock roadway dynamic pressure impact Similarity model test Combined support Ground pressure monitoring
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部