期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamic Mechanical Behavior and Failure Characteristics of Sandstone Subjected to Freeze-thaw Treatment at Different Strain Rates
1
作者 ZHANG Chunyang TAN Tao +1 位作者 LI Xiaoshuang ZHANG Yuchao 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1262-1274,共13页
The influence of FT(freeze-thaw)cycles and average strain rate on the dynamic impact performance,energy evolution characteristics,and failure behavior of sandstone was studied through dynamic impact tests.Results disp... The influence of FT(freeze-thaw)cycles and average strain rate on the dynamic impact performance,energy evolution characteristics,and failure behavior of sandstone was studied through dynamic impact tests.Results displayed that the FT damage process of samples can be divided into three stages based on the changes in weight,porosity,and P-wave velocity.The dynamic peak strength,dynamic elastic modulus,and strength ratio decreased with increasing FT cycles,and increased with increasing average strain rate.Moreover,the average strain rate reduced the influence of FT cycles on dynamic peak strength.In general,the incident energy,reflected energy and dissipated energy increased with increasing average strain rate,the transmitted energy was negligibly affected by the average strain rate,and the energy dissipation ratio decreased with increasing average strain rate.In addition,the influence of FT cycles on each type of energy and energy dissipation ratio during sample failure was smaller than that of average strain rate.The average size of fragments can accurately demonstrate the impact of FT damage and average strain rate on dynamic peak strength and failure mode,and quantitatively evaluate the sample’s fragmentation degree.Fractal dimension varies with FT cycles and average strain rate,and the threshold is between 148.30 and 242.57 s^(-1).If the average strain rate is in the threshold range,the relationship between the fractal dimension and dynamic peak strength is more regular,otherwise,it will become complicated.The results reveal the dynamic failure mechanism of white sandstone samples,providing assistance for dynamic rock-breaking and disaster prevention in cold regions. 展开更多
关键词 white sandstone FT cycles dynamic impact tests dynamic mechanical characteristics energy conversion fractal dimension of fragments
原文传递
Optimal design and dynamic impact tests of removable bollards
2
作者 Chen Suwen Liu Tianyi +2 位作者 Li Guoqiang Liu Qing Sun Jianyun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期793-802,共10页
Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduc... Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30~ and satisfy the requirements of the BSI Specification. 展开更多
关键词 REMOVABLE anti-ram bollards optimal design orthogonal design method dynamic impact test
在线阅读 下载PDF
Dynamic mechanical characteristics and application of constant resistance energy-absorbing supporting material 被引量:15
3
作者 Qi Wang Shuo Xu +3 位作者 Manchao He Bei Jiang Huayong Wei Yue Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期447-458,共12页
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab... In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety. 展开更多
关键词 Constant resistance energy-absorbing Supporting material dynamic impact tests Mechanical characteristics Field application
在线阅读 下载PDF
The Application of Dynamic Shock Mechanics Test in Engineering Blasting 被引量:1
4
作者 Lin Cheng Junfeng Liu 《Journal of World Architecture》 2020年第4期13-15,共3页
With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction pro... With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting. 展开更多
关键词 Earth and stone blasting dynamic impact compression test(SHPB) dynamic splitting tensile test Stress-strain curve analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部