We employ the Green–Kubo(G-K)and Einstein relations to estimate the self-diffusion coefficients(denoted as D_(G)and D_(E),respectively)in two-dimensional(2D)strongly coupled dusty plasmas(SC-DPs)via equilibrium molec...We employ the Green–Kubo(G-K)and Einstein relations to estimate the self-diffusion coefficients(denoted as D_(G)and D_(E),respectively)in two-dimensional(2D)strongly coupled dusty plasmas(SC-DPs)via equilibrium molecular dynamics(EMD)simulations.D_(G)and D_(E)are computed for a broad domain of screening length(κ)and coupling parameters(Γ)along with different system sizes.It is observed that both D_(G)and D_(E)decrease linearly with increasing Г in warm liquid states and increase with increasingκ.In cold liquid states,the Einstein relation accurately predicts D_(E)in 2D SC-DPs because diffusion motion is close to normal diffusion,but the G-K relation provides overestimations of D_(G),because VACF indicates anomalous diffusion;thus,D_(G)is not accurate.Our new simulation outcomes reveal that D_(G)and D_(E)remain independent of system sizes.Furthermore,our investigations demonstrate that at higher temperatures,D_(G)and D_(E)converge,suggesting diffusion motion close to normal diffusion,while at lower temperatures,these two values diverge.We find reasonable agreement by comparing current and existing numerical,theoretical and experimental data.Moreover,when normalizing diffusion coefficients by the Einstein frequency and testing against the universal temperature scaling law,D_(G)deviates from theoretical curves at low temperatures and κ,whereas D_(E)only disagrees with theory at very smallκ(■0.10).These findings provide valuable insight into diagnosing dust component parameters within 2D DP systems and contribute to the broader understanding of diffusion processes in DP environments.展开更多
The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations ...The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.展开更多
In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,were obtained by a great number of elastohydrodynamic traction tests.The nonlinear ...In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,were obtained by a great number of elastohydrodynamic traction tests.The nonlinear dynamics differential equations of high-speed angular contact ball bearing were built on the basis of dynamic theory of rolling bearings and solved by Gear Stiff(GSTIFF) integer algorithm with variable step.The impact of lubricant traction coefficient on cage's dynamic characteristics in high-speed angular contact ball bearing was investigated,and Poincare map was used to analyze the impact of three types of aviation lubricating oils on the dynamic response of cage's mass center.And then,the period of dynamic response of cage's mass center and the slip ratio of cage were used to assess the stability of cage under various working conditions.The results of this paper provide the theoretical basis for the selection and application of aviation lubricating oil.展开更多
We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with t...We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature.展开更多
In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock ...In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers.展开更多
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan...To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.展开更多
Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC).Focusing on the two problems that the moment estimator of data used in cali...Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC).Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process,an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed.During calibration process,for the repeatedly-measured data obtained from experiments with different trial weights,according to the fact that measurement error of each sensor had the same statistical characteristics,the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established.During the updating process,information obtained from calibration was regarded as prior information,which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating.Moreover,Gibbs sampling method of Markov Chain Monte Carlo(MCMC)was adopted to obtain the maximum posterior estimation of parameters to be estimated.On the independent developed dynamic balancing testbed,prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively,the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy;the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process,and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response.展开更多
The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics meth ods based on the embedded-atom-method (EAM) potential function. The simulated results show that a g...The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics meth ods based on the embedded-atom-method (EAM) potential function. The simulated results show that a good inverse linear relation exists between the natural logarithm of self-diffusion coefficients and temperature, though the results in the litera ture vary somewhat, due to the employment of different potential functions. The estimated activation energy of liquid metals obtained by fitting the Arrhenius formula is close to the experimental data. The temperature-dependent shear-viscosities obtained from the Stokes-Einstein relation in conjunction with the results of molecular dynamics simulation are generally consistent with other values in the literature.展开更多
The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this ...The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.展开更多
Saturator is one of the core components of humid air turbine (HAT) and is the main feature of HAT making it different from other gas turbine cycles. Due to the lack of sufficient experience in commercial plant opera...Saturator is one of the core components of humid air turbine (HAT) and is the main feature of HAT making it different from other gas turbine cycles. Due to the lack of sufficient experience in commercial plant operation, HAT cycle has a great demand for modeling and simulation of the system and its components, especially the saturator, to provide reference for system design and optimization. The conventional saturator models are usually based on the theory of heat and mass transfer, which need two accurate coefficients to ensure convincing results. This work proposes a global heat and mass transfer coefficient based on cooling tower technology to model the saturator in small-scale HAT cycle. Compared with the experimental data, the simulation results show that the proposed model well predicts the dynamic humidity and temperature distribution characteristics of saturator at low air pressure and temperature.展开更多
The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This...The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.展开更多
[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for imp...[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach.展开更多
Fluid film bearings are widely used as support elements of rotating shaft for HDD (hard disk drive) spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increas...Fluid film bearings are widely used as support elements of rotating shaft for HDD (hard disk drive) spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipments such as mobile PCs, car navigation systems. Hence, the rotating shaft has a possibility to come in contact with the bearing and it causes wear or seizure to the bearing surface. In order to avoid the problems, it is extremely important to enhance the dynamic characteristics of the fluid film bearings for spindles. However, verification from both theory and experiment of dynamic characteristics such as spring coefficients and damping coefficients is rare and few. In this paper, the bearing vibration characteristics when the HDD spindle is oscillated are investigated theoretically and experimentally. And then the identification method ofoil film coefficients of fluid film bearing spindles is described.展开更多
In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influen...In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force.展开更多
The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coeffic...The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coefficients were deduced. At first, the static diffusion coefficients of four kinds of particleboards were determined by using diffusion cup method. The results demonstrated that the static diffusion coefficients parallel to panel surface were 10-20 times as large as that of perpendicular to panel surface for test boards. To determine both dynamic diffusion coefficients and surface emission coefficients of moisture in particleboards in one experimental period, specimens in four different thicknesses of each kind of particleboard were used in the experiment. Then the method of regression was used and the dynamic diffusion coefficients and surface emission coefficients were determined based on the slope and intercept of the regressive line.展开更多
Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS in...Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS influence coefficient method when there are correlation planes in the dynamic balancing. It also presencd the new ridge regression method for solving correction masses according to the Tikhonov regularization theory, and described the reason why the ridge regression can eliminate the disadvantage of the LS method. Applying this new method to dynamic balancing of gas turbine, it is found that this method is superior to the LS method when influence coefficient matrix is ill-conditioned,the minimal correction masses and residual vibration are obtained in the dynamic balancing of rotors.展开更多
The design of the geometric shape of a helicopter fuselage poses a serious challenge for designers. The most important parameter in determining the shape of the helicopter fuselage is its aerodynamic coefficients. The...The design of the geometric shape of a helicopter fuselage poses a serious challenge for designers. The most important parameter in determining the shape of the helicopter fuselage is its aerodynamic coefficients. These coefficients are determined using two methods: wind tunnel test and computational fluid dynamics(CFD) simulation. The first method is expensive, time-consuming and limited. In addition, estimates in regions away from data can be poor. The second method,due to the limitations of numerical solution, the number of nodes and the used solution, is often inaccurate. In this paper, with the aim of accelerating the design process and achieving results with reasonable engineering accuracy, an engineering-statistical model which is useful for estimating the aerodynamic coefficients was developed, which mitigated the drawbacks of these two methods.First, by combining CFD simulation and regression techniques, an engineering model was presented for the estimation of aerodynamic coefficients. Then, by using the data from a wind tunnel test and implementation of statistical adjustment, the engineering model was modified and an engineering-statistical model was obtained. By spending less time and cost, the final model provided the aerodynamic coefficients of a helicopter fuselage at the desired angles of attack with reasonable accuracy. Finally, three numerical examples were provided to illustrate the application of the proposed model. Comparative results demonstrate the effectiveness of the engineering-statistical model in estimating the aerodynamic coefficients of a helicopter fuselage.展开更多
The mobility of polymer chain segments is shown to play a major role in the diffusion ofdisperse dyes in a copolymerization modified PET system, monoepoxy compoundCH_3 (CH_3),OCH_2CH--CH_2 modified PET. The rate of dy...The mobility of polymer chain segments is shown to play a major role in the diffusion ofdisperse dyes in a copolymerization modified PET system, monoepoxy compoundCH_3 (CH_3),OCH_2CH--CH_2 modified PET. The rate of dye diffusion (diffusion coefficient D) hasbeen related to the time-dependent mechanical property, dynamic loss modulus E', which iscontrolled by the mobility of chain segments. In this modified copolyester system, the variance ofamount of modifier in the copolyester fibers causes the change in disperse dye diffusion coefficientto fiber, and in the dynamic loss modulus of the fibers, but the relationship between the diffusionand the dynamic loss modulus is in agreement with the theoretical relation derived by Bell andDumbleton. The relation obtained in this paper is:Ln D=-2. 28Ln E'+26. 81展开更多
The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time ...The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time and the polymer chain length is strongly affected by the friction coefficient in LD and the driving force.However,there is no scaling relationship between the translocation time and the friction coefficient.The translocation time is almost inversely proportional to the driving force,which is in agreement with those obtained in biased translocation.The scaling relationship between gyration radius(R g) of subchain at the trans side with the subchain length(L) is R g ~L 0.33 that is in good agreement with the limiting value for molten globule state,while the curve of R g of subchain at the cis side has two distinct stages.During translocation,the subchain at the cis side is being stretched gradually,and the structure of the subchain transforms from sphere-like to rod-like.When the effect of stretching reaches the tail end,the subchain is at the most stretched state.Finally the subchain will rapidly restore to coil structure.According to the results of force analysis,the retarding force at the trans side is more crucial during the practical translocation.展开更多
Self-diffusion coefficients of exponential-six fluids are studied using equilibrium molecular dynamics simulation technique. Mean-square displacements and velocity autocorrelation functions are used to calculate self-...Self-diffusion coefficients of exponential-six fluids are studied using equilibrium molecular dynamics simulation technique. Mean-square displacements and velocity autocorrelation functions are used to calculate self-diffusion coefficients through Einstein equation and Green-Kubo formula. It has been found that simulation results are in good agreement with experimental data for liquid argon which is taken as exponential-six fluid. The effects of density, temperature and steepness factor for repulsive part of exponential-six potential on self-diffusion coefficients are also investigated. The simulation results indicate that the self-diffusion coefficient of exponential-six fluid increases as temperature increases and density decreases. In addition, the larger self-diffusion coefficients are obtained as the steepness factor increases at the same temperature and density condition.展开更多
基金support of the Fundamental Research Funds for the Central Universities of China(Grant No.2019ZDPY16).
文摘We employ the Green–Kubo(G-K)and Einstein relations to estimate the self-diffusion coefficients(denoted as D_(G)and D_(E),respectively)in two-dimensional(2D)strongly coupled dusty plasmas(SC-DPs)via equilibrium molecular dynamics(EMD)simulations.D_(G)and D_(E)are computed for a broad domain of screening length(κ)and coupling parameters(Γ)along with different system sizes.It is observed that both D_(G)and D_(E)decrease linearly with increasing Г in warm liquid states and increase with increasingκ.In cold liquid states,the Einstein relation accurately predicts D_(E)in 2D SC-DPs because diffusion motion is close to normal diffusion,but the G-K relation provides overestimations of D_(G),because VACF indicates anomalous diffusion;thus,D_(G)is not accurate.Our new simulation outcomes reveal that D_(G)and D_(E)remain independent of system sizes.Furthermore,our investigations demonstrate that at higher temperatures,D_(G)and D_(E)converge,suggesting diffusion motion close to normal diffusion,while at lower temperatures,these two values diverge.We find reasonable agreement by comparing current and existing numerical,theoretical and experimental data.Moreover,when normalizing diffusion coefficients by the Einstein frequency and testing against the universal temperature scaling law,D_(G)deviates from theoretical curves at low temperatures and κ,whereas D_(E)only disagrees with theory at very smallκ(■0.10).These findings provide valuable insight into diagnosing dust component parameters within 2D DP systems and contribute to the broader understanding of diffusion processes in DP environments.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604200)the National Natural Science Foundation of China(Grant No.12261131495)Institute of Systems Science,Beijing Wuzi University(Grant No.BWUISS21).
文摘The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.
基金financially co-supported by the National Natural Science Foundation of China(No.U1404514)Henan Outstanding Person Foundation(No.144200510020) of ChinaCollaborative Innovation Center of Major Machine Manufacturing in Liaoning,China
文摘In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,were obtained by a great number of elastohydrodynamic traction tests.The nonlinear dynamics differential equations of high-speed angular contact ball bearing were built on the basis of dynamic theory of rolling bearings and solved by Gear Stiff(GSTIFF) integer algorithm with variable step.The impact of lubricant traction coefficient on cage's dynamic characteristics in high-speed angular contact ball bearing was investigated,and Poincare map was used to analyze the impact of three types of aviation lubricating oils on the dynamic response of cage's mass center.And then,the period of dynamic response of cage's mass center and the slip ratio of cage were used to assess the stability of cage under various working conditions.The results of this paper provide the theoretical basis for the selection and application of aviation lubricating oil.
基金supported by the National Natural Science Foundation of China (Grant No. 51076128)the National High Technology Research and Development Program of China (Grant No. 2009AA05Z107)
文摘We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature.
基金This work is supported by the National Natural Science Foundation of China(Nos.51804099 and U1704129)the Focus Research and Special Development for Scientific and Technological Project of Henan Province(No.202102310542)+1 种基金the Fundamental Research Funds for the Central Universities(No.2018ZDPY02ZDPY02)the research fund of State Key Laboratory of Coal Resources and Safe Mining,CUMT(SKLCRSM19KF011).
文摘In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers.
基金Supported by Commission of Science Technology and Industry for National Defense of China(No.JPPT-115-477).
文摘To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.
基金supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2008 AA04Z114)
文摘Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC).Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process,an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed.During calibration process,for the repeatedly-measured data obtained from experiments with different trial weights,according to the fact that measurement error of each sensor had the same statistical characteristics,the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established.During the updating process,information obtained from calibration was regarded as prior information,which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating.Moreover,Gibbs sampling method of Markov Chain Monte Carlo(MCMC)was adopted to obtain the maximum posterior estimation of parameters to be estimated.On the independent developed dynamic balancing testbed,prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively,the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy;the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process,and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response.
基金supported by the National Natural Science Foundation of China(Grant Nos.11032003 and 11221202)the National Basic Research Program of China(Grant No.2010CB731600)
文摘The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics meth ods based on the embedded-atom-method (EAM) potential function. The simulated results show that a good inverse linear relation exists between the natural logarithm of self-diffusion coefficients and temperature, though the results in the litera ture vary somewhat, due to the employment of different potential functions. The estimated activation energy of liquid metals obtained by fitting the Arrhenius formula is close to the experimental data. The temperature-dependent shear-viscosities obtained from the Stokes-Einstein relation in conjunction with the results of molecular dynamics simulation are generally consistent with other values in the literature.
基金Supported by the Natural Science Foundation of Shanxi Province Project(2012011023-2)
文摘The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.
基金Project(2017YFB0903300)supported by National Key R&D Program of ChinaProject(2016M601593)supported by China Postdoctoral Science Foundation
文摘Saturator is one of the core components of humid air turbine (HAT) and is the main feature of HAT making it different from other gas turbine cycles. Due to the lack of sufficient experience in commercial plant operation, HAT cycle has a great demand for modeling and simulation of the system and its components, especially the saturator, to provide reference for system design and optimization. The conventional saturator models are usually based on the theory of heat and mass transfer, which need two accurate coefficients to ensure convincing results. This work proposes a global heat and mass transfer coefficient based on cooling tower technology to model the saturator in small-scale HAT cycle. Compared with the experimental data, the simulation results show that the proposed model well predicts the dynamic humidity and temperature distribution characteristics of saturator at low air pressure and temperature.
基金supported by the National Natural Science Foundation of China(No.21503130 and No.11674212,and No.21603144)supported by the Young Eastern Scholar Program of the Shanghai Municipal Education Commission(QD2016021)+1 种基金the Shanghai Key Laboratory of High Temperature Superconductors(No.14DZ2260700)supported by Shanghai Sailing Program(No.2016YF1408400).
文摘The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.
文摘[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach.
文摘Fluid film bearings are widely used as support elements of rotating shaft for HDD (hard disk drive) spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipments such as mobile PCs, car navigation systems. Hence, the rotating shaft has a possibility to come in contact with the bearing and it causes wear or seizure to the bearing surface. In order to avoid the problems, it is extremely important to enhance the dynamic characteristics of the fluid film bearings for spindles. However, verification from both theory and experiment of dynamic characteristics such as spring coefficients and damping coefficients is rare and few. In this paper, the bearing vibration characteristics when the HDD spindle is oscillated are investigated theoretically and experimentally. And then the identification method ofoil film coefficients of fluid film bearing spindles is described.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175422)
文摘In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force.
文摘The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coefficients were deduced. At first, the static diffusion coefficients of four kinds of particleboards were determined by using diffusion cup method. The results demonstrated that the static diffusion coefficients parallel to panel surface were 10-20 times as large as that of perpendicular to panel surface for test boards. To determine both dynamic diffusion coefficients and surface emission coefficients of moisture in particleboards in one experimental period, specimens in four different thicknesses of each kind of particleboard were used in the experiment. Then the method of regression was used and the dynamic diffusion coefficients and surface emission coefficients were determined based on the slope and intercept of the regressive line.
文摘Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS influence coefficient method when there are correlation planes in the dynamic balancing. It also presencd the new ridge regression method for solving correction masses according to the Tikhonov regularization theory, and described the reason why the ridge regression can eliminate the disadvantage of the LS method. Applying this new method to dynamic balancing of gas turbine, it is found that this method is superior to the LS method when influence coefficient matrix is ill-conditioned,the minimal correction masses and residual vibration are obtained in the dynamic balancing of rotors.
文摘The design of the geometric shape of a helicopter fuselage poses a serious challenge for designers. The most important parameter in determining the shape of the helicopter fuselage is its aerodynamic coefficients. These coefficients are determined using two methods: wind tunnel test and computational fluid dynamics(CFD) simulation. The first method is expensive, time-consuming and limited. In addition, estimates in regions away from data can be poor. The second method,due to the limitations of numerical solution, the number of nodes and the used solution, is often inaccurate. In this paper, with the aim of accelerating the design process and achieving results with reasonable engineering accuracy, an engineering-statistical model which is useful for estimating the aerodynamic coefficients was developed, which mitigated the drawbacks of these two methods.First, by combining CFD simulation and regression techniques, an engineering model was presented for the estimation of aerodynamic coefficients. Then, by using the data from a wind tunnel test and implementation of statistical adjustment, the engineering model was modified and an engineering-statistical model was obtained. By spending less time and cost, the final model provided the aerodynamic coefficients of a helicopter fuselage at the desired angles of attack with reasonable accuracy. Finally, three numerical examples were provided to illustrate the application of the proposed model. Comparative results demonstrate the effectiveness of the engineering-statistical model in estimating the aerodynamic coefficients of a helicopter fuselage.
文摘The mobility of polymer chain segments is shown to play a major role in the diffusion ofdisperse dyes in a copolymerization modified PET system, monoepoxy compoundCH_3 (CH_3),OCH_2CH--CH_2 modified PET. The rate of dye diffusion (diffusion coefficient D) hasbeen related to the time-dependent mechanical property, dynamic loss modulus E', which iscontrolled by the mobility of chain segments. In this modified copolyester system, the variance ofamount of modifier in the copolyester fibers causes the change in disperse dye diffusion coefficientto fiber, and in the dynamic loss modulus of the fibers, but the relationship between the diffusionand the dynamic loss modulus is in agreement with the theoretical relation derived by Bell andDumbleton. The relation obtained in this paper is:Ln D=-2. 28Ln E'+26. 81
基金Supported by the National Natural Science Foundation of China (20736002, 20706013)the Open Project of the State Key Laboratory of Chemical Engineering ECUST (SKL-ChE-09C02)the Natural Science Fund of the Education Department of Anhui Province (KJ2011B116)
文摘The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time and the polymer chain length is strongly affected by the friction coefficient in LD and the driving force.However,there is no scaling relationship between the translocation time and the friction coefficient.The translocation time is almost inversely proportional to the driving force,which is in agreement with those obtained in biased translocation.The scaling relationship between gyration radius(R g) of subchain at the trans side with the subchain length(L) is R g ~L 0.33 that is in good agreement with the limiting value for molten globule state,while the curve of R g of subchain at the cis side has two distinct stages.During translocation,the subchain at the cis side is being stretched gradually,and the structure of the subchain transforms from sphere-like to rod-like.When the effect of stretching reaches the tail end,the subchain is at the most stretched state.Finally the subchain will rapidly restore to coil structure.According to the results of force analysis,the retarding force at the trans side is more crucial during the practical translocation.
基金Supported by the National Natural Science Foundation of China(No.29736170).
文摘Self-diffusion coefficients of exponential-six fluids are studied using equilibrium molecular dynamics simulation technique. Mean-square displacements and velocity autocorrelation functions are used to calculate self-diffusion coefficients through Einstein equation and Green-Kubo formula. It has been found that simulation results are in good agreement with experimental data for liquid argon which is taken as exponential-six fluid. The effects of density, temperature and steepness factor for repulsive part of exponential-six potential on self-diffusion coefficients are also investigated. The simulation results indicate that the self-diffusion coefficient of exponential-six fluid increases as temperature increases and density decreases. In addition, the larger self-diffusion coefficients are obtained as the steepness factor increases at the same temperature and density condition.