期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
3D Hand Pose Estimation Using Semantic Dynamic Hypergraph Convolutional Networks
1
作者 WU Yalei LI Jinghua +2 位作者 KONG Dehui LI Qianxing YIN Baocai 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期855-865,共11页
Due to self-occlusion and high degree of freedom,estimating 3D hand pose from a single RGB image is a great challenging problem.Graph convolutional networks(GCNs)use graphs to describe the physical connection relation... Due to self-occlusion and high degree of freedom,estimating 3D hand pose from a single RGB image is a great challenging problem.Graph convolutional networks(GCNs)use graphs to describe the physical connection relationships between hand joints and improve the accuracy of 3D hand pose regression.However,GCNs cannot effectively describe the relationships between non-adjacent hand joints.Recently,hypergraph convolutional networks(HGCNs)have received much attention as they can describe multi-dimensional relationships between nodes through hyperedges;therefore,this paper proposes a framework for 3D hand pose estimation based on HGCN,which can better extract correlated relationships between adjacent and non-adjacent hand joints.To overcome the shortcomings of predefined hypergraph structures,a kind of dynamic hypergraph convolutional network is proposed,in which hyperedges are constructed dynamically based on hand joint feature similarity.To better explore the local semantic relationships between nodes,a kind of semantic dynamic hypergraph convolution is proposed.The proposed method is evaluated on publicly available benchmark datasets.Qualitative and quantitative experimental results both show that the proposed HGCN and improved methods for 3D hand pose estimation are better than GCN,and achieve state-of-the-art performance compared with existing methods. 展开更多
关键词 hand pose estimation hypergraph convolution dynamic hypergraph convolution semantic dynamic hypergraph convolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部