In the framework of this research, the principle focus is to analyze the effects of fluid Prandtl number (Pr) on natural convection heat transfer in a volumetrically heated molten pool. As a part of the work, numerica...In the framework of this research, the principle focus is to analyze the effects of fluid Prandtl number (Pr) on natural convection heat transfer in a volumetrically heated molten pool. As a part of the work, numerical analysis is performed for hemispherical 3-D vessel slice to investigate the physics of the effect of Pr number on convective heat transfer characteristics in the melt pool. The investigation is based on ANSYS FLUET, where natural convection heat transfer effect is taken into consideration by Phase-change Effective Convectivity Model (PECM), which is implemented with FLUENT CFD as User Defined Function (UDF), programed by the user. The PECM is tested first by a benchmark test against CFD to gain confidence in its applicability as an analysis tool. Different simulant materials are used with their thermo-physical properties representing different Pr number as input for modelling for both single and double layer melt pool configuration. The selected modelling approach is validated against RASPLAV experimental result with respect to the inner temperature distribution that qualifies our model to run in the proceeding calculation. It is ensured that an isothermal boundary condition (343 K) is applied along vessel outer wall throughout the series of simulation cases. The corresponding Rayleigh number (Ra) ranges from 1014 - 1015 and Prandtl number (Pr) 3 - 5. It is found that the fluid Pr number has small effects on the averaged Nu numbers in the convection-dominated regions. The decrease in the Pr number may cause a decrease in the Nu numbers on the top and sidewalls of cavities. In the conduction dominated regions (stably stratified bottom parts of enclosure), the effect of fluid Pr number on heat transfer is more significant and it grows with increasing Ra number.展开更多
目的通过在FLUENT计算流体动力学分析软件中调用自主开发的用户自定义函数(user defined function,UDF)动网格程序,实现网格节点根据壁面切应力(wall shear stress,WSS)判据进行移动更新,并将此方法应用于模拟动脉粥样硬化(atherosclero...目的通过在FLUENT计算流体动力学分析软件中调用自主开发的用户自定义函数(user defined function,UDF)动网格程序,实现网格节点根据壁面切应力(wall shear stress,WSS)判据进行移动更新,并将此方法应用于模拟动脉粥样硬化(atherosclerosis,AS)的发展过程中。方法二次开发的UDF程序能够在计算过程中提取壁面各节点处WSS结果,若满足阈值判据条件则进行移动调整。采用弹性光顺与局部重构相结合的网格再生方法调控网格模型的更新,保证变形过程中的网格质量。结果 UDF程序成功提取出WSS并调整网格进行相应变形。初始狭窄造成的尾部涡流导致血管壁出现近端局部扩张,远端再狭窄的形貌特征,临床血管造影存在相似形貌。结论自主开发的UDF程序达到了预期效果,勾勒出了WSS影响下AS的形貌特征。在今后研究中可以考虑在动网格的变形控制方面添加更多影响因素,为AS临床预后及风险评测提供数值依据。展开更多
The present study is to develop a new user-defined function using artificial neural networks intent Computational Fluid Dynamics(CFD)simulation for the prediction of water-vapor multiphase flows through fuel assemblie...The present study is to develop a new user-defined function using artificial neural networks intent Computational Fluid Dynamics(CFD)simulation for the prediction of water-vapor multiphase flows through fuel assemblies of nuclear reactor.Indeed,the provision of accurate material data especially for water and steam over a wider range of temperatures and pressures is an essential requirement for conducting CFD simulations in nuclear engineering thermal hydraulics.Contrary to the commercial CFD solver ANSYS-CFX,where the industrial standard IAPWS-IF97(International Association for the Properties of Water and Steam-Industrial Formulation 1997)is implemented in the ANSYS-CFX internal material database,the solver ANSYS-FLUENT provides only the possibility to use equation of state(EOS),like ideal gas law,Redlich-Kwong EOS and piecewise polynomial interpolations.For that purpose,new approach is used to implement the thermophysical properties of water and steam for subcooled water in CFD solver ANSYS-FLUENT.The technique is based on artificial neural networks of multi-layer type to accurately predict 10 thermodynamic and transport properties of the density,specific heat,dynamic viscosity,thermal conductivity and speed of sound on saturated liquid and saturated vapor.Temperature is used as single input parameter,the maximum absolute error predicted by the artificial neural networks ANNs,was around 3%.Thus,the numerical investigation under CFD solver ANSYSFLUENT becomes competitive with other CFD codes of which ANSYS-CFX in this area.In fact,the coupling of the Rensselaer Polytechnical Institute(RPI)wall boiling model and the developed Neural-UDF(User Defined Function)was found to be useful in predicting the vapor volume fraction in subcooled boiling flow.展开更多
A CFD(Computational Fluid Dynamics) model has been developed using the commercial CFD package FLUENT for the thermal convection inside air filled cylindrical DACON sensor, where the onboard time dependent gravitationa...A CFD(Computational Fluid Dynamics) model has been developed using the commercial CFD package FLUENT for the thermal convection inside air filled cylindrical DACON sensor, where the onboard time dependent gravitational micro acceleration has been considered. Time dependent, curve fitted gravitational accelera-tion in x- and y-axes from published data have been incorporated in FLUENT through a User Defined Function (UDF), developed in C which includes space craft rotation. At the sensor plane the two-dimensional flow has also been visualized. A good agreement is between simu-lation and published experimental data. Last but not the least, for checking its response to suffi-ciently strong perturbations in an orbital flight, physical and numerical experiments are carried out where an astronaut swung the sensor in hands along the y axis with amplitude of 10cm and a frequency of 0.2 Hz. A good qualitative validation has been achieved between CFD and actual experimental results.展开更多
文摘In the framework of this research, the principle focus is to analyze the effects of fluid Prandtl number (Pr) on natural convection heat transfer in a volumetrically heated molten pool. As a part of the work, numerical analysis is performed for hemispherical 3-D vessel slice to investigate the physics of the effect of Pr number on convective heat transfer characteristics in the melt pool. The investigation is based on ANSYS FLUET, where natural convection heat transfer effect is taken into consideration by Phase-change Effective Convectivity Model (PECM), which is implemented with FLUENT CFD as User Defined Function (UDF), programed by the user. The PECM is tested first by a benchmark test against CFD to gain confidence in its applicability as an analysis tool. Different simulant materials are used with their thermo-physical properties representing different Pr number as input for modelling for both single and double layer melt pool configuration. The selected modelling approach is validated against RASPLAV experimental result with respect to the inner temperature distribution that qualifies our model to run in the proceeding calculation. It is ensured that an isothermal boundary condition (343 K) is applied along vessel outer wall throughout the series of simulation cases. The corresponding Rayleigh number (Ra) ranges from 1014 - 1015 and Prandtl number (Pr) 3 - 5. It is found that the fluid Pr number has small effects on the averaged Nu numbers in the convection-dominated regions. The decrease in the Pr number may cause a decrease in the Nu numbers on the top and sidewalls of cavities. In the conduction dominated regions (stably stratified bottom parts of enclosure), the effect of fluid Pr number on heat transfer is more significant and it grows with increasing Ra number.
文摘The present study is to develop a new user-defined function using artificial neural networks intent Computational Fluid Dynamics(CFD)simulation for the prediction of water-vapor multiphase flows through fuel assemblies of nuclear reactor.Indeed,the provision of accurate material data especially for water and steam over a wider range of temperatures and pressures is an essential requirement for conducting CFD simulations in nuclear engineering thermal hydraulics.Contrary to the commercial CFD solver ANSYS-CFX,where the industrial standard IAPWS-IF97(International Association for the Properties of Water and Steam-Industrial Formulation 1997)is implemented in the ANSYS-CFX internal material database,the solver ANSYS-FLUENT provides only the possibility to use equation of state(EOS),like ideal gas law,Redlich-Kwong EOS and piecewise polynomial interpolations.For that purpose,new approach is used to implement the thermophysical properties of water and steam for subcooled water in CFD solver ANSYS-FLUENT.The technique is based on artificial neural networks of multi-layer type to accurately predict 10 thermodynamic and transport properties of the density,specific heat,dynamic viscosity,thermal conductivity and speed of sound on saturated liquid and saturated vapor.Temperature is used as single input parameter,the maximum absolute error predicted by the artificial neural networks ANNs,was around 3%.Thus,the numerical investigation under CFD solver ANSYSFLUENT becomes competitive with other CFD codes of which ANSYS-CFX in this area.In fact,the coupling of the Rensselaer Polytechnical Institute(RPI)wall boiling model and the developed Neural-UDF(User Defined Function)was found to be useful in predicting the vapor volume fraction in subcooled boiling flow.
文摘A CFD(Computational Fluid Dynamics) model has been developed using the commercial CFD package FLUENT for the thermal convection inside air filled cylindrical DACON sensor, where the onboard time dependent gravitational micro acceleration has been considered. Time dependent, curve fitted gravitational accelera-tion in x- and y-axes from published data have been incorporated in FLUENT through a User Defined Function (UDF), developed in C which includes space craft rotation. At the sensor plane the two-dimensional flow has also been visualized. A good agreement is between simu-lation and published experimental data. Last but not the least, for checking its response to suffi-ciently strong perturbations in an orbital flight, physical and numerical experiments are carried out where an astronaut swung the sensor in hands along the y axis with amplitude of 10cm and a frequency of 0.2 Hz. A good qualitative validation has been achieved between CFD and actual experimental results.