针对复杂海洋环境中存在背景噪声、海洋垃圾特征模糊和目标尺度小的检测挑战,本文提出一种基于改进CenterNet的海洋垃圾无锚检测算法——MG-CenterNet。引入GB(green-blue)注意力机制,通过关注海洋图像绿色、蓝色通道来增强特征提取;利...针对复杂海洋环境中存在背景噪声、海洋垃圾特征模糊和目标尺度小的检测挑战,本文提出一种基于改进CenterNet的海洋垃圾无锚检测算法——MG-CenterNet。引入GB(green-blue)注意力机制,通过关注海洋图像绿色、蓝色通道来增强特征提取;利用跨层特征聚合(cross-layer feature aggregation,CFA)模块丰富关键特征反馈,使模型获取更多像素级语义信息从而精准分类图像;构造完全交并比(complete intersection over union,CIoU)损失函数优化边界框匹配度,进一步提高目标定位精度。MG-CenterNet在TrashCan数据集和自建数据集上分别取得了77.98%和76.92%的平均精确率均值(mean average precision,m AP),推理速度分别达到27.18帧/s和26.98帧/s。研究结果证明MG-CenterNet在检测精度上显著优于其他算法,满足实时检测的要求。低对比度及遮挡条件下的验证实验进一步证明了所提出算法的鲁棒性和可靠性,为复杂环境中的海洋垃圾检测提供了科学参考。展开更多
针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作...针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作为其基础网络,同时修改卷积核尺寸,进一步降低特征图信息的损耗,并且为增强检测模型对小尺度目标的鲁棒性,额外增加第4个尺寸为104×104像素的特征检测层;在对特征图融合操作方面,使用双线性插值法进行上采样操作代替原最近邻插值法上采样操作,解决大部分检测算法中存在的特征严重损失问题;在损失函数方面,使用广义交并比(GIoU)代替交并比(IoU)来计算边界框的损失值,同时引入Focal Loss焦点损失函数作为边界框的置信度损失函数。实验结果表明,改进算法在VisDrone2019数据集上的均值平均精度(mAP)为63.3%,较原始YOLOv3检测模型提高了13.2百分点,并且在GTX 1080 Ti设备上可实现52帧/s的检测速度,对小目标有着较好的检测性能。展开更多
在自然场景中,天气情况、光照强度、背景干扰等问题影响火焰检测的准确性.为了实现复杂场景下实时准确的火焰检测,在目标检测网络YOLOv5的基础上,结合Focal Loss焦点损失函数、CIoU(Complete Intersection over Union)损失函数与多特征...在自然场景中,天气情况、光照强度、背景干扰等问题影响火焰检测的准确性.为了实现复杂场景下实时准确的火焰检测,在目标检测网络YOLOv5的基础上,结合Focal Loss焦点损失函数、CIoU(Complete Intersection over Union)损失函数与多特征融合,提出实时高效的火焰检测方法.为了缓解正负样本不均衡问题,并充分利用困难样本的信息,引入焦点损失函数,同时结合火焰静态特征和动态特征,设计多特征融合方法,达到剔除误报火焰的目的.针对国内外缺乏火焰数据集的问题,构建大规模、高质量的十万量级火焰数据集(http://www.yongxu.org/data bases.html).实验表明,文中方法在准确率、速度、精度和泛化能力等方面均有明显提升,同时降低误报率.展开更多
光刻热点检测是实现集成电路可制造性设计,保障集成电路芯片最终良率的关键。鉴于传统基于深度学习的光刻热点检测方法难以满足先进集成电路制造对检测精度的要求,提出了一种基于改进Yolov5s的检测算法,用于光刻版图热点缺陷的精确检测...光刻热点检测是实现集成电路可制造性设计,保障集成电路芯片最终良率的关键。鉴于传统基于深度学习的光刻热点检测方法难以满足先进集成电路制造对检测精度的要求,提出了一种基于改进Yolov5s的检测算法,用于光刻版图热点缺陷的精确检测。通过将坐标注意力机制引入骨干网络,提高了Yolov5s模型对版图图形区域的关注度,进而极大地改善了基于Yolov5s的检测算法的光刻热点检测性能。与此同时,采用Sigmoid线性单元激活函数进一步完善整个神经网络的非线性表达,利用Scylla交并比损失函数更快速地定量评估边界框回归损失,提高了热点检测算法的收敛速度和精度。将ICCAD(The International Conference on Computer-Aided Design)2012竞赛基准、经光学邻近校正优化后的光刻图形作为数据集对所提算法开展性能测试实验,验证了热点检测算法的优异检测精度。实验结果表明,该算法的平均准确率、平均召回率、平均F1-score和均值平均精度分别达到97.7%、98.0%、97.8%和98.4%,显著优于其他光刻热点检测算法,展示了良好的应用前景。展开更多
文摘针对复杂海洋环境中存在背景噪声、海洋垃圾特征模糊和目标尺度小的检测挑战,本文提出一种基于改进CenterNet的海洋垃圾无锚检测算法——MG-CenterNet。引入GB(green-blue)注意力机制,通过关注海洋图像绿色、蓝色通道来增强特征提取;利用跨层特征聚合(cross-layer feature aggregation,CFA)模块丰富关键特征反馈,使模型获取更多像素级语义信息从而精准分类图像;构造完全交并比(complete intersection over union,CIoU)损失函数优化边界框匹配度,进一步提高目标定位精度。MG-CenterNet在TrashCan数据集和自建数据集上分别取得了77.98%和76.92%的平均精确率均值(mean average precision,m AP),推理速度分别达到27.18帧/s和26.98帧/s。研究结果证明MG-CenterNet在检测精度上显著优于其他算法,满足实时检测的要求。低对比度及遮挡条件下的验证实验进一步证明了所提出算法的鲁棒性和可靠性,为复杂环境中的海洋垃圾检测提供了科学参考。
文摘针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作为其基础网络,同时修改卷积核尺寸,进一步降低特征图信息的损耗,并且为增强检测模型对小尺度目标的鲁棒性,额外增加第4个尺寸为104×104像素的特征检测层;在对特征图融合操作方面,使用双线性插值法进行上采样操作代替原最近邻插值法上采样操作,解决大部分检测算法中存在的特征严重损失问题;在损失函数方面,使用广义交并比(GIoU)代替交并比(IoU)来计算边界框的损失值,同时引入Focal Loss焦点损失函数作为边界框的置信度损失函数。实验结果表明,改进算法在VisDrone2019数据集上的均值平均精度(mAP)为63.3%,较原始YOLOv3检测模型提高了13.2百分点,并且在GTX 1080 Ti设备上可实现52帧/s的检测速度,对小目标有着较好的检测性能。
文摘光刻热点检测是实现集成电路可制造性设计,保障集成电路芯片最终良率的关键。鉴于传统基于深度学习的光刻热点检测方法难以满足先进集成电路制造对检测精度的要求,提出了一种基于改进Yolov5s的检测算法,用于光刻版图热点缺陷的精确检测。通过将坐标注意力机制引入骨干网络,提高了Yolov5s模型对版图图形区域的关注度,进而极大地改善了基于Yolov5s的检测算法的光刻热点检测性能。与此同时,采用Sigmoid线性单元激活函数进一步完善整个神经网络的非线性表达,利用Scylla交并比损失函数更快速地定量评估边界框回归损失,提高了热点检测算法的收敛速度和精度。将ICCAD(The International Conference on Computer-Aided Design)2012竞赛基准、经光学邻近校正优化后的光刻图形作为数据集对所提算法开展性能测试实验,验证了热点检测算法的优异检测精度。实验结果表明,该算法的平均准确率、平均召回率、平均F1-score和均值平均精度分别达到97.7%、98.0%、97.8%和98.4%,显著优于其他光刻热点检测算法,展示了良好的应用前景。