In this paper, a difference scheme with energy dynamic equilibrium (DS-EDE) is presented, which can be used for the simulation of long-term atmosphere and sea motion. Based on three dimensional nonlinear evolution equ...In this paper, a difference scheme with energy dynamic equilibrium (DS-EDE) is presented, which can be used for the simulation of long-term atmosphere and sea motion. Based on three dimensional nonlinear evolution equations for atmosphere and sea motion, a three dimensional compact upwind scheme (CUWS) is constructed, as the basis of the DS-EDE. The DS-EDE satisfies the following condition of energy dynamic equilibrium (EDE): the total work of external forces on the region boundary is equal to the sum of the total effective variation of the kinetic energy and the energy dissipation in the average flow motion and the effective variation of the potential energy per unit time within the region of interest. It really reflects the basic mechanism of the action of external forces and dissipation in atmosphere and sea movement. Therefore, the DS-EDE developed in this paper is a suitable model for simulating long-term atmosphere and sea movement with forcing and dissipation.展开更多
Having criticized the current architecture of Advanced Traveler Information Systems (ATISs), this work discusses a new base of requirements to develop a new paradigm for traffic information systems. It mainly integr...Having criticized the current architecture of Advanced Traveler Information Systems (ATISs), this work discusses a new base of requirements to develop a new paradigm for traffic information systems. It mainly integrates three dimensions within a traffic system: drivers' pattern of behavior and preferences, urban traffic desires, and capabilities of traffic information service providers. Based on the above, functional segments from several related backgrounds are brought together to structure a new architecture, called Interactive Traveler Information System (ITIS). The main interactive feature of this new architecture is a two-way communication track between drivers and the traffic information system provider-in fact, a decision on choosing a road at a particular time for an individual will be made based on the utility of both sides. This new configuration consists of driver-side smartphone application, centric traffic prediction, and decision-maker units, which will shape a new approach of decision-making processes. These all work together to satisfy the designated goal of ITIS, which is preserving the Wardrop equilibrium condition in the traffic network level. Finally, we concentrate on a comparison study, which shows a differentiation between performance of the proposed ITIS and the current ATIS model in a real situation. This has been done with simulations of analogical scenarios. The most noticeable advantage of the proposed architecture is not being limited to a saturation limit, and the positive effect of increasing system penetration in the performance of the newly introduced information system. In conclusion, new research subjects are suggested to be carried out.展开更多
In the face of the impact of the epidemic on the industrial chain and supply chain,it is an inevitable requirement for industrial development to ensure the dynamic balance of the supply chain.Supply chain is the basis...In the face of the impact of the epidemic on the industrial chain and supply chain,it is an inevitable requirement for industrial development to ensure the dynamic balance of the supply chain.Supply chain is the basis for the generation of industrial chain.Industrial linkage can promote the rational layout of industries.The operation mode of supply chain is the main driving force of industrial linkage.To build a dynamic and balanced supply chain,we must focus on symbolic industries and adopt measures of chain protection,chain supplement,chain creation and chain financing.展开更多
The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forc...The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.展开更多
The role of the construction industry in economic growth has been widely discussed in the extant literature,but existing studies have not investigated the disaggregated impact of construction investments on the produc...The role of the construction industry in economic growth has been widely discussed in the extant literature,but existing studies have not investigated the disaggregated impact of construction investments on the production and social sectors.This study examines the disaggregated effect of construction investments on the Saudi economy.The study uses a social accounting matrix of Saudi Arabia and constructs a dynamic computable general equilibrium model.The findings reveal that construction investments significantly boosted GDP and aggregate investments in the first two periods;however,the growth declined in the following three periods.This finding underlines the importance of long-term investments in the construction sector and calls for continuous monitoring and updating of the investment policy for sustainable development.This study also presents the disaggregated impact of investments on the value-added by each sector of the economy.The ranking of sectors exhibits that mining and quarry activities underwent a high increase in value-added,second to construction activities.Other economic activities also experienced growth in value-added and some of them changed their ranks within the five years.展开更多
The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.I...The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries.展开更多
In this article, we summarize some results on invariant non-homogeneous and dynamic-equilibrium (DE) continuous Markov stochastic processes. Moreover, we discuss a few examples and consider a new application of DE pro...In this article, we summarize some results on invariant non-homogeneous and dynamic-equilibrium (DE) continuous Markov stochastic processes. Moreover, we discuss a few examples and consider a new application of DE processes to elements of survival analysis. These elements concern the stochastic quadratic-hazard-rate model, for which our work 1) generalizes the reading of its It? stochastic ordinary differential equation (ISODE) for the hazard-rate-driving independent (HRDI) variables, 2) specifies key properties of the hazard-rate function, and in particular, reveals that the baseline value of the HRDI variables is the expectation of the DE solution of the ISODE, 3) suggests practical settings for obtaining multi-dimensional probability densities necessary for consistent and systematic reconstruction of missing data by Gibbs sampling and 4) further develops the corresponding line of modeling. The resulting advantages are emphasized in connection with the framework of clinical trials of chronic obstructive pulmonary disease (COPD) where we propose the use of an endpoint reflecting the narrowing of airways. This endpoint is based on a fairly compact geometric model that quantifies the course of the obstruction, shows how it is associated with the hazard rate, and clarifies why it is life-threatening. The work also suggests a few directions for future research.展开更多
The challenge of meeting the ever-increasing food demand for the growing population will be further exacerbated by climate change in Ethiopia. This paper presents the simulated economy-wide impacts of climate change o...The challenge of meeting the ever-increasing food demand for the growing population will be further exacerbated by climate change in Ethiopia. This paper presents the simulated economy-wide impacts of climate change on the agriculture sector of Ethiopia using a dynamic computable general equilibrium (CGE) model. The study simulated the scenarios of agricultural productivity change induced by climate change up to the year 2050. At national level, the simulation results suggest that crop production will be adversely affected during the coming four decades and the severity will increase over the time period. Production of teff, maize and sorghum will decline by 25.4, 21.8 and 25.2 percent, respectively by 2050 compared to the base period. Climate change will also cause losses of 31.1 percent agricultural GDP at factor cost by 2050. Climate change affects more the income and consumption of poor rural households than urban rural non-farming households. The reduction in agricultural production will not be evenly distributed across agro ecological zones, and will not all be negative. Among rural residents, climate change impacts tend to hurt the income of the poor more in drought prone regions. Income from labor, land and livestock in moisture sufficient highland cereal-based will decline by 5.1, 8.8 and 15.2 percent in 2050. This study indicated that since climate change is an inevitable phenomenon, the country should start mainstreaming adaptation measures to sustain the overall performance of the economy.展开更多
Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was poin...Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.展开更多
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ...The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables.展开更多
Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for ...Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for axial and transverse deformations.The discretized dynamic governing equations are obtained by using the finite element method and Lagrange’s equations of the second kind.Time responses are conducted to compare the proposed model with other previous models.The stretching deformation due to rotating motion is observed and calculated by special formulations under dynamic equilibrium.The stretching deformation and the change of the associated equilibrium position are taken into account to analyze the free vibration and frequency response of the rotating beams.Analytical and numerical comparisons show that the proposed model can provide reliable results,while the previous models may lead to imprecise results,especially in high-speed conditions.展开更多
High-performance Ti_(3)C_(2)T_(x)fibers have garnered significant potential for smart fibers enabled fabrics.Nonetheless,a major challenge hindering their widespread use is the lack of strong interlayer interactions b...High-performance Ti_(3)C_(2)T_(x)fibers have garnered significant potential for smart fibers enabled fabrics.Nonetheless,a major challenge hindering their widespread use is the lack of strong interlayer interactions between Ti_(3)C_(2)T_(x)nanosheets within fibers,which restricts their properties.Herein,a versatile strategy is proposed to construct wet-spun Ti_(3)C_(2)T_(x)fibers,in which trace amounts of borate form strong interlayer crosslinking between Ti_(3)C_(2)T_(x)nanosheets to significantly enhance interactions as supported by density functional theory calculations,thereby reducing interlayer spacing,diminishing microscopic voids and promoting orientation of the nanosheets.The resultant Ti_(3)C_(2)T_(x)fibers exhibit exceptional electrical conductivity of 7781 S cm^(-1)and mechanical properties,including tensile strength of 188.72 MPa and Young's modulus of 52.42 GPa.Notably,employing equilibrium molecular dynamics simulations,finite element analysis,and cross-wire geometry method,it is revealed that such crosslinking also effectively lowers interfacial thermal resistance and ultimately elevates thermal conductivity of Ti_(3)C_(2)T_(x)fibers to 13 W m^(-1)K^(-1),marking the first systematic study on thermal conductivity of Ti_(3)C_(2)T_(x)fibers.The simple and efficient interlayer crosslinking enhancement strategy not only enables the construction of thermal conductivity Ti_(3)C_(2)T_(x)fibers with high electrical conductivity for smart textiles,but also offers a scalable approach for assembling other nanomaterials into multifunctional fibers.展开更多
The lattice thermal conductivity of boron nitride nanoribbon(BNNR) is calculated by using equilibrium molecular dynamics(EMD) simulation method. The Green–Kubo relation derived from linear response theory is used...The lattice thermal conductivity of boron nitride nanoribbon(BNNR) is calculated by using equilibrium molecular dynamics(EMD) simulation method. The Green–Kubo relation derived from linear response theory is used to acquire the thermal conductivity from heat current auto-correlation function(HCACF). HCACF of the selected BNNR system shows a tendency of a very fast decay and then be followed by a very slow decay process,finally,approaching zero approximately within 3 ps. The convergence of lattice thermal conductivity demonstrates that the thermal conductivity of BNNR can be simulated by EMD simulation using several thousands of atoms with periodic boundary conditions. The results show that BNNR exhibit lower thermal conductivity than that of boron nitride(BN) monolayer,which indicates that phonons boundary scatting significantly suppresses the phonons transport in BNNR. Vacancies in BNNR greatly affect the lattice thermal conductivity,in detail,only 1% concentration of vacancies in BNNR induce a 60% reduction of the lattice thermal conductivity at room temperature.展开更多
As an indication of the Earth's mass distribution, the principal moments of inertia (PMOI, i.e., A, B, C) of the Earth are the basic parameters in studies of the global dynamics of the earth, like earth nutation, a...As an indication of the Earth's mass distribution, the principal moments of inertia (PMOI, i.e., A, B, C) of the Earth are the basic parameters in studies of the global dynamics of the earth, like earth nutation, and the geophysics. From the aspect of observation, the PMOI can be calculated from the spherical coefficients of observed gravity field. In this paper, the PMOI are calculated directly according to its definition with the figures of the Earth's interior derived by a generalized theory of the hydrostatic equilibrium figure of the Earth. We obtain that the angle between the principal axis of the maximum moment of PMOI and the rotational axis is 0.184~, which means that the other two principal axes are very closely in the equatorial plane. Meanwhile, B-A is 1.60 x 10-5 MR2, and the global dynamical flattening (H) is calculated to be 3.29587 ~ 10-3, which is 0.67% different from the latest observation derived value Hobs(3.273795 × 10 ^-3) (Petit and Luzum, 2010), and this is a significant improvement from the 1.1% difference between the value of H derived from traditional theories of the figure of the Earth and the value of Hobs. It shows that we can calculate the PMOI and H with an appropriate accuracy by a gener- alized theory of the hydrostatic equilibrium figure of the Earth.展开更多
Tangential separator is widely used in industries as vital demulsification and dewatering separation devices but leads to high breakage rate of droplets.To address this,the swirl separator with progressive process was...Tangential separator is widely used in industries as vital demulsification and dewatering separation devices but leads to high breakage rate of droplets.To address this,the swirl separator with progressive process was developed by exploiting operational merits of swirl element to minimize the breakage rate of droplet.The initial droplet size distribution has an influence on the droplet size distribution within the flow field.Accordingly,the droplet size distribution was analyzed numerically and verified through experimental measurements.The evolution of the droplet size distribution from the numerical simulation was then investigated.Based on these,the mechanism of droplet coalescence and breakup were examined.The results show that the initial equilibrium droplet size distribution is d_(50)=85–90μm at V=5 m/s.Simultaneously,the turbulent dissipation rate is lower than the other initial droplet size distributions.Moreover,the numerical model can reasonably be utilized to the investigation.When the initial droplet size distribution is above d_(50)=90μm,the effect of droplet breakup is dominated.The rate of droplet breakup increases,and the coalescence rate decreases with the draining time of liquid film for coalescence increasing,which is unconducive to improve the separation efficiency.Conversely,if the initial droplet size distribution is below d_(50)=85μm,the swirl element promotes the droplet coalescence.The separation efficiency has an improvement.Additionally,the swirl element enhances the turbulent dissipation rate within the flow field.展开更多
We have developed a structure of dynamic knowledge for non-inertial systems, the so-called Theory of Dynamic Interactions (TDI) as a part of non-inertial dynamic knowledge, which incorporates a causal demonstration of...We have developed a structure of dynamic knowledge for non-inertial systems, the so-called Theory of Dynamic Interactions (TDI) as a part of non-inertial dynamic knowledge, which incorporates a causal demonstration of phenomena accelerated by rotation, which would complement Classical Mechanics. We believe that the TDI mathematical model that we propose is of great conceptual importance. In addition, we think that it is not only necessary to understand the dynamics of rotating bodies, but also to understand the dynamics of the cosmos, with bodies that orbit and with constantly recurring movements, which make possible systems that have been in dynamic equilibrium for centuries and are not in a process of unlimited expansion. We even believe that this new dynamic theory allows us a better understanding of our universe, and the matter from which it is made.展开更多
The solar radiation that hits the Earth conditions the dynamic equilibrium that prevails on our planet. Consideration of basic physical-chemical knowledge shows that this equilibrium can be changed only by additional ...The solar radiation that hits the Earth conditions the dynamic equilibrium that prevails on our planet. Consideration of basic physical-chemical knowledge shows that this equilibrium can be changed only by additional energy input or prolongation of the interaction time solar radiation—Earth matter. The contribution of H<sub>2</sub>O(g) and CO<sub>2</sub> to the protection of the earth against excessive warming is experimentally and by basic laws of nature secured. For a greenhouse effect, a part of the earth radiation must be radiated back to the earth and then into space. If one understands the earth radiation as radiation of a black body with the average global environmental temperature, from all vibrations normal modes of the gases H<sub>2</sub>O(g) and CO<sub>2</sub> only the bending mode of CO<sub>2</sub> with 4% of the solar constant can contribute beside the rotational modes of the water to the greenhouse effect. The contributions of the normal modes of H<sub>2</sub>O(g) and CO<sub>2</sub> to the heat capacity of the atmosphere are negligible. Therefore, in agreement with studies by K. Ångström, CO<sub>2</sub> contributes only to the stabilization of the global environmental temperature. Whether the use of renewable energies can actually at least mitigate the increase of the environmental temperature is by no means certain but must be examined for each individual case. With certainty, this goal can only be achieved by reducing the energy consumption of mankind.展开更多
The cooperative evolutionary stability under self-organized organization is discussed in this paper. The differences between the objects studied by cooperative game theory and the ones studied by cooperative game in s...The cooperative evolutionary stability under self-organized organization is discussed in this paper. The differences between the objects studied by cooperative game theory and the ones studied by cooperative game in science & technology alliance are analyzed. The mutant probability of agent's utility under endoge- nous technical factor condition is analyzed. By clarifying the connotation of Pareto-dominate institution in cooperative game, the efficient and feasible managerial definition of Pareto-dominate Institution in science & technology alliance is presented. The evolutionarily cooperative game for the agent in Pareto-dominate institution is explained. And then the necessary condition of cooperative evolutionary stabilization based on multi-agent utility's dynamic equilibrium is put forward. Finally, the model of alliance's utility's dynamic equilibrium under self-organization is established.展开更多
Shear-wall structures are quite common in seismic areas because of their successful seismic behavior during severe earthquakes. But shear walls are prone to brittle failure. This study proposes a new method of vertica...Shear-wall structures are quite common in seismic areas because of their successful seismic behavior during severe earthquakes. But shear walls are prone to brittle failure. This study proposes a new method of vertically installed dampers (VID) to reduce the vibration in shear-wall structures. The motion characteristic of a vertical damping system is that every mass has horizontal and rotational displacements simultaneously, The establishment of dynamic equations should take into account the equilibrium conditions of both horizontal and rotational vibrations. Dynamic equilibrium equations of VID systems are derived from a model of a structure with VID. An example shear-wall structure, with and with- out VID, is studied. There are some changes in the characteristics of the maximum horizontal displacement response. Without dampers, the relative displacements between different floors in the shear wall increase with height. With dampers, the relative displacements are more uniformly distributed, and lateral displacements at the top and at the bottom are closer. When the damping coefficient is 1 000 kN · s/ m, the numerical results reveal that the maximum horizontal displacement and the maximum rotational displacement of the top floor have reduced by 59.3 % and 54.8 % respectively.展开更多
基金This study was supported by China Institute for Radiation Protection,partly by State Key Laboratory of Numerical Modeling for Atmosphenc Sciences and Geophysical Fluid Dynamics.
文摘In this paper, a difference scheme with energy dynamic equilibrium (DS-EDE) is presented, which can be used for the simulation of long-term atmosphere and sea motion. Based on three dimensional nonlinear evolution equations for atmosphere and sea motion, a three dimensional compact upwind scheme (CUWS) is constructed, as the basis of the DS-EDE. The DS-EDE satisfies the following condition of energy dynamic equilibrium (EDE): the total work of external forces on the region boundary is equal to the sum of the total effective variation of the kinetic energy and the energy dissipation in the average flow motion and the effective variation of the potential energy per unit time within the region of interest. It really reflects the basic mechanism of the action of external forces and dissipation in atmosphere and sea movement. Therefore, the DS-EDE developed in this paper is a suitable model for simulating long-term atmosphere and sea movement with forcing and dissipation.
文摘Having criticized the current architecture of Advanced Traveler Information Systems (ATISs), this work discusses a new base of requirements to develop a new paradigm for traffic information systems. It mainly integrates three dimensions within a traffic system: drivers' pattern of behavior and preferences, urban traffic desires, and capabilities of traffic information service providers. Based on the above, functional segments from several related backgrounds are brought together to structure a new architecture, called Interactive Traveler Information System (ITIS). The main interactive feature of this new architecture is a two-way communication track between drivers and the traffic information system provider-in fact, a decision on choosing a road at a particular time for an individual will be made based on the utility of both sides. This new configuration consists of driver-side smartphone application, centric traffic prediction, and decision-maker units, which will shape a new approach of decision-making processes. These all work together to satisfy the designated goal of ITIS, which is preserving the Wardrop equilibrium condition in the traffic network level. Finally, we concentrate on a comparison study, which shows a differentiation between performance of the proposed ITIS and the current ATIS model in a real situation. This has been done with simulations of analogical scenarios. The most noticeable advantage of the proposed architecture is not being limited to a saturation limit, and the positive effect of increasing system penetration in the performance of the newly introduced information system. In conclusion, new research subjects are suggested to be carried out.
文摘In the face of the impact of the epidemic on the industrial chain and supply chain,it is an inevitable requirement for industrial development to ensure the dynamic balance of the supply chain.Supply chain is the basis for the generation of industrial chain.Industrial linkage can promote the rational layout of industries.The operation mode of supply chain is the main driving force of industrial linkage.To build a dynamic and balanced supply chain,we must focus on symbolic industries and adopt measures of chain protection,chain supplement,chain creation and chain financing.
基金Supported by the NationaJ Natural Science Foundation of China (21106176), President Fund of GUCAS (Y15101JY00), China Postdoctoral Science Foundation (2012T50155) and National Basic Research Program of China (2009CB219903).
文摘The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.
文摘The role of the construction industry in economic growth has been widely discussed in the extant literature,but existing studies have not investigated the disaggregated impact of construction investments on the production and social sectors.This study examines the disaggregated effect of construction investments on the Saudi economy.The study uses a social accounting matrix of Saudi Arabia and constructs a dynamic computable general equilibrium model.The findings reveal that construction investments significantly boosted GDP and aggregate investments in the first two periods;however,the growth declined in the following three periods.This finding underlines the importance of long-term investments in the construction sector and calls for continuous monitoring and updating of the investment policy for sustainable development.This study also presents the disaggregated impact of investments on the value-added by each sector of the economy.The ranking of sectors exhibits that mining and quarry activities underwent a high increase in value-added,second to construction activities.Other economic activities also experienced growth in value-added and some of them changed their ranks within the five years.
基金financially supported by the Russian Science Foundation(Project 23-11-00242).
文摘The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries.
文摘In this article, we summarize some results on invariant non-homogeneous and dynamic-equilibrium (DE) continuous Markov stochastic processes. Moreover, we discuss a few examples and consider a new application of DE processes to elements of survival analysis. These elements concern the stochastic quadratic-hazard-rate model, for which our work 1) generalizes the reading of its It? stochastic ordinary differential equation (ISODE) for the hazard-rate-driving independent (HRDI) variables, 2) specifies key properties of the hazard-rate function, and in particular, reveals that the baseline value of the HRDI variables is the expectation of the DE solution of the ISODE, 3) suggests practical settings for obtaining multi-dimensional probability densities necessary for consistent and systematic reconstruction of missing data by Gibbs sampling and 4) further develops the corresponding line of modeling. The resulting advantages are emphasized in connection with the framework of clinical trials of chronic obstructive pulmonary disease (COPD) where we propose the use of an endpoint reflecting the narrowing of airways. This endpoint is based on a fairly compact geometric model that quantifies the course of the obstruction, shows how it is associated with the hazard rate, and clarifies why it is life-threatening. The work also suggests a few directions for future research.
文摘The challenge of meeting the ever-increasing food demand for the growing population will be further exacerbated by climate change in Ethiopia. This paper presents the simulated economy-wide impacts of climate change on the agriculture sector of Ethiopia using a dynamic computable general equilibrium (CGE) model. The study simulated the scenarios of agricultural productivity change induced by climate change up to the year 2050. At national level, the simulation results suggest that crop production will be adversely affected during the coming four decades and the severity will increase over the time period. Production of teff, maize and sorghum will decline by 25.4, 21.8 and 25.2 percent, respectively by 2050 compared to the base period. Climate change will also cause losses of 31.1 percent agricultural GDP at factor cost by 2050. Climate change affects more the income and consumption of poor rural households than urban rural non-farming households. The reduction in agricultural production will not be evenly distributed across agro ecological zones, and will not all be negative. Among rural residents, climate change impacts tend to hurt the income of the poor more in drought prone regions. Income from labor, land and livestock in moisture sufficient highland cereal-based will decline by 5.1, 8.8 and 15.2 percent in 2050. This study indicated that since climate change is an inevitable phenomenon, the country should start mainstreaming adaptation measures to sustain the overall performance of the economy.
文摘Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.
基金Project supported by the Ministry of Science and Higher Education of Poland(Nos.04/43/DSPB/0085and 02/21/DSPB/3464)
文摘The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables.
基金the National Natural Science Foundation of China(Nos.12232012,12202110,12102191,and 12072159)the Fundamental Research Funds for the Central Universities of China(No.30922010314)the Natural Science Foundation of Guangxi Province of China(No.2020GXNSFBA297010)。
文摘Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for axial and transverse deformations.The discretized dynamic governing equations are obtained by using the finite element method and Lagrange’s equations of the second kind.Time responses are conducted to compare the proposed model with other previous models.The stretching deformation due to rotating motion is observed and calculated by special formulations under dynamic equilibrium.The stretching deformation and the change of the associated equilibrium position are taken into account to analyze the free vibration and frequency response of the rotating beams.Analytical and numerical comparisons show that the proposed model can provide reliable results,while the previous models may lead to imprecise results,especially in high-speed conditions.
基金the support from the National Natural Science Foundation of China(52403112,52473083)Natural Science Basic Research Program of Shaanxi(2024JC-TBZC-04)+2 种基金the Innovation Capability Support Program of Shaanxi(2024RS-CXTD-57)Fundamental Research Funds for the Central Universities(D5000240062,D5000240077)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(202410699041)。
文摘High-performance Ti_(3)C_(2)T_(x)fibers have garnered significant potential for smart fibers enabled fabrics.Nonetheless,a major challenge hindering their widespread use is the lack of strong interlayer interactions between Ti_(3)C_(2)T_(x)nanosheets within fibers,which restricts their properties.Herein,a versatile strategy is proposed to construct wet-spun Ti_(3)C_(2)T_(x)fibers,in which trace amounts of borate form strong interlayer crosslinking between Ti_(3)C_(2)T_(x)nanosheets to significantly enhance interactions as supported by density functional theory calculations,thereby reducing interlayer spacing,diminishing microscopic voids and promoting orientation of the nanosheets.The resultant Ti_(3)C_(2)T_(x)fibers exhibit exceptional electrical conductivity of 7781 S cm^(-1)and mechanical properties,including tensile strength of 188.72 MPa and Young's modulus of 52.42 GPa.Notably,employing equilibrium molecular dynamics simulations,finite element analysis,and cross-wire geometry method,it is revealed that such crosslinking also effectively lowers interfacial thermal resistance and ultimately elevates thermal conductivity of Ti_(3)C_(2)T_(x)fibers to 13 W m^(-1)K^(-1),marking the first systematic study on thermal conductivity of Ti_(3)C_(2)T_(x)fibers.The simple and efficient interlayer crosslinking enhancement strategy not only enables the construction of thermal conductivity Ti_(3)C_(2)T_(x)fibers with high electrical conductivity for smart textiles,but also offers a scalable approach for assembling other nanomaterials into multifunctional fibers.
基金Supported by the Natural Science Foundation of Hubei Province(2014CFB610)the Excellent Young Innovation Team Project of Hubei Province(T201429)
文摘The lattice thermal conductivity of boron nitride nanoribbon(BNNR) is calculated by using equilibrium molecular dynamics(EMD) simulation method. The Green–Kubo relation derived from linear response theory is used to acquire the thermal conductivity from heat current auto-correlation function(HCACF). HCACF of the selected BNNR system shows a tendency of a very fast decay and then be followed by a very slow decay process,finally,approaching zero approximately within 3 ps. The convergence of lattice thermal conductivity demonstrates that the thermal conductivity of BNNR can be simulated by EMD simulation using several thousands of atoms with periodic boundary conditions. The results show that BNNR exhibit lower thermal conductivity than that of boron nitride(BN) monolayer,which indicates that phonons boundary scatting significantly suppresses the phonons transport in BNNR. Vacancies in BNNR greatly affect the lattice thermal conductivity,in detail,only 1% concentration of vacancies in BNNR induce a 60% reduction of the lattice thermal conductivity at room temperature.
文摘As an indication of the Earth's mass distribution, the principal moments of inertia (PMOI, i.e., A, B, C) of the Earth are the basic parameters in studies of the global dynamics of the earth, like earth nutation, and the geophysics. From the aspect of observation, the PMOI can be calculated from the spherical coefficients of observed gravity field. In this paper, the PMOI are calculated directly according to its definition with the figures of the Earth's interior derived by a generalized theory of the hydrostatic equilibrium figure of the Earth. We obtain that the angle between the principal axis of the maximum moment of PMOI and the rotational axis is 0.184~, which means that the other two principal axes are very closely in the equatorial plane. Meanwhile, B-A is 1.60 x 10-5 MR2, and the global dynamical flattening (H) is calculated to be 3.29587 ~ 10-3, which is 0.67% different from the latest observation derived value Hobs(3.273795 × 10 ^-3) (Petit and Luzum, 2010), and this is a significant improvement from the 1.1% difference between the value of H derived from traditional theories of the figure of the Earth and the value of Hobs. It shows that we can calculate the PMOI and H with an appropriate accuracy by a gener- alized theory of the hydrostatic equilibrium figure of the Earth.
基金supported by grants from the National Natural Science Foundation of China(grant No.22178036)CSTC projects(grant Nos.CSTB2023NSCQ-MSX0791,CSTB2023NSCQ-LZX0096)projects of science and technology research program of Chongqing Education Commission of China(grant Nos.KJQN202100817,KJZD-M202200801,KJZD-M202300802 and CXQT21023).
文摘Tangential separator is widely used in industries as vital demulsification and dewatering separation devices but leads to high breakage rate of droplets.To address this,the swirl separator with progressive process was developed by exploiting operational merits of swirl element to minimize the breakage rate of droplet.The initial droplet size distribution has an influence on the droplet size distribution within the flow field.Accordingly,the droplet size distribution was analyzed numerically and verified through experimental measurements.The evolution of the droplet size distribution from the numerical simulation was then investigated.Based on these,the mechanism of droplet coalescence and breakup were examined.The results show that the initial equilibrium droplet size distribution is d_(50)=85–90μm at V=5 m/s.Simultaneously,the turbulent dissipation rate is lower than the other initial droplet size distributions.Moreover,the numerical model can reasonably be utilized to the investigation.When the initial droplet size distribution is above d_(50)=90μm,the effect of droplet breakup is dominated.The rate of droplet breakup increases,and the coalescence rate decreases with the draining time of liquid film for coalescence increasing,which is unconducive to improve the separation efficiency.Conversely,if the initial droplet size distribution is below d_(50)=85μm,the swirl element promotes the droplet coalescence.The separation efficiency has an improvement.Additionally,the swirl element enhances the turbulent dissipation rate within the flow field.
文摘We have developed a structure of dynamic knowledge for non-inertial systems, the so-called Theory of Dynamic Interactions (TDI) as a part of non-inertial dynamic knowledge, which incorporates a causal demonstration of phenomena accelerated by rotation, which would complement Classical Mechanics. We believe that the TDI mathematical model that we propose is of great conceptual importance. In addition, we think that it is not only necessary to understand the dynamics of rotating bodies, but also to understand the dynamics of the cosmos, with bodies that orbit and with constantly recurring movements, which make possible systems that have been in dynamic equilibrium for centuries and are not in a process of unlimited expansion. We even believe that this new dynamic theory allows us a better understanding of our universe, and the matter from which it is made.
文摘The solar radiation that hits the Earth conditions the dynamic equilibrium that prevails on our planet. Consideration of basic physical-chemical knowledge shows that this equilibrium can be changed only by additional energy input or prolongation of the interaction time solar radiation—Earth matter. The contribution of H<sub>2</sub>O(g) and CO<sub>2</sub> to the protection of the earth against excessive warming is experimentally and by basic laws of nature secured. For a greenhouse effect, a part of the earth radiation must be radiated back to the earth and then into space. If one understands the earth radiation as radiation of a black body with the average global environmental temperature, from all vibrations normal modes of the gases H<sub>2</sub>O(g) and CO<sub>2</sub> only the bending mode of CO<sub>2</sub> with 4% of the solar constant can contribute beside the rotational modes of the water to the greenhouse effect. The contributions of the normal modes of H<sub>2</sub>O(g) and CO<sub>2</sub> to the heat capacity of the atmosphere are negligible. Therefore, in agreement with studies by K. Ångström, CO<sub>2</sub> contributes only to the stabilization of the global environmental temperature. Whether the use of renewable energies can actually at least mitigate the increase of the environmental temperature is by no means certain but must be examined for each individual case. With certainty, this goal can only be achieved by reducing the energy consumption of mankind.
基金Sponsored by Humanities and Social Sciences Fund of Ministry of Education of the People’s Republic of China (MEPRC) (07JA880011)the Eleventh Fives Educational Plan Fund of Beijing Municipal Commission of Education (ADA07067)the Graduate Educational Inno-vation Program of MEPRC (P-0801)
文摘The cooperative evolutionary stability under self-organized organization is discussed in this paper. The differences between the objects studied by cooperative game theory and the ones studied by cooperative game in science & technology alliance are analyzed. The mutant probability of agent's utility under endoge- nous technical factor condition is analyzed. By clarifying the connotation of Pareto-dominate institution in cooperative game, the efficient and feasible managerial definition of Pareto-dominate Institution in science & technology alliance is presented. The evolutionarily cooperative game for the agent in Pareto-dominate institution is explained. And then the necessary condition of cooperative evolutionary stabilization based on multi-agent utility's dynamic equilibrium is put forward. Finally, the model of alliance's utility's dynamic equilibrium under self-organization is established.
文摘Shear-wall structures are quite common in seismic areas because of their successful seismic behavior during severe earthquakes. But shear walls are prone to brittle failure. This study proposes a new method of vertically installed dampers (VID) to reduce the vibration in shear-wall structures. The motion characteristic of a vertical damping system is that every mass has horizontal and rotational displacements simultaneously, The establishment of dynamic equations should take into account the equilibrium conditions of both horizontal and rotational vibrations. Dynamic equilibrium equations of VID systems are derived from a model of a structure with VID. An example shear-wall structure, with and with- out VID, is studied. There are some changes in the characteristics of the maximum horizontal displacement response. Without dampers, the relative displacements between different floors in the shear wall increase with height. With dampers, the relative displacements are more uniformly distributed, and lateral displacements at the top and at the bottom are closer. When the damping coefficient is 1 000 kN · s/ m, the numerical results reveal that the maximum horizontal displacement and the maximum rotational displacement of the top floor have reduced by 59.3 % and 54.8 % respectively.