期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Control Model of Bloom Dynamic Soft Reduction 被引量:2
1
作者 CHEN Yong JI Cheng +1 位作者 ZHU Miao-yong WU Guo-rong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第9期31-35,共5页
There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Develo... There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Developing a control model is the key to apply soft reduction technology successfully. As the research object, 360 mm ×450 mm bloom caster in PISCO (Panzhihua Iron and Steel Co. ) has been studied, and the research method for control model of dynamic soft reduction has been proposed. On the basis of solidification and heat transfer model, the position of soft reduction and reduction distribution of each frame are determined according to the bloom temperature distribution and solid fraction in bloom center calculated. Production practice shows that the ratio of center porosity which is less than or equal to 1.0, increased to 97.27%, ratio of central segregation which is less than or equal to 0.5, increased to 80.91%, and ratio of central carbon segregation index which is more than or equal to 1.10, decreased to 4% with the applying model of dynamic soft reduction. 展开更多
关键词 bloom continuous casting dynamic soft reduction control model center porosity central segregation
原文传递
Sampled-data modeling and dynamical effect of output-capacitor time-constant for valley voltage-mode controlled buck-boost converter 被引量:5
2
作者 周述晗 周国华 +2 位作者 曾绍桓 冷敏瑞 徐顺刚 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期515-525,共11页
By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering... By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering the fact that the increasing and decreasing slopes of the inductor current are assumed to be constant during each switching cycle, an especial sampleddata model of valley voltage-mode controlled buck-boost converter is established. Based on this model, the dynamical effect of an output-capacitor time-constant on the valley voltage-mode controlled buck-boost converter is revealed and analyzed via the bifurcation diagrams, the movements of eigenvalues, the Lyapunov exponent spectra, the boundary equations,and the operating-state regions. It is found that with gradual reduction of output-capacitor time-constant, the buck-boost converter in continuous conduction mode(CCM) shows the evolutive dynamic behavior from period-1 to period-2, period-4, period-8, chaos, and invalid state. The stability boundary and the invalidated boundary are derived theoretically by stability analysis, where the stable state of valley voltage-mode controlled buck-boost converter can enter into an unstable state, and the converter can shift from the operation region to a forbidden region. These results verified by time-domain waveforms and phase portraits of both simulation and experiment indicate that the sampled-data model is correct and the time constant of the output capacitor is a critical factor for valley voltage-mode controlled buck-boost converter, which has a significant effect on the dynamics as well as control stability. 展开更多
关键词 buck-boost converter valley voltage-mode control sampled-data modeling dynamics
原文传递
Model control technologies of dynamic secondary cooling and soft reduction for slab continuous casting
3
作者 ZHANG Qunliang GUO Zhaohui 《Baosteel Technical Research》 CAS 2012年第3期61-64,共4页
Dynamic model control technologies of secondary cooling and soft reduction of Baosteel are introduced. Model principle and control system architecture are summarized, as well as functions and features. Finally, applic... Dynamic model control technologies of secondary cooling and soft reduction of Baosteel are introduced. Model principle and control system architecture are summarized, as well as functions and features. Finally, applications of model technologies are discussed. The self-developed dynamic secondary cooling model and the dynamic soft reduction model have been applied on several casting machines inside and outside Baosteel, desired control effects were achieved with good stability and reliability. Temperature measurement results verified the correctness of model. 展开更多
关键词 slab casting secondary cooling soft reduction dynamic model control
在线阅读 下载PDF
A Hybrid Approach to Modeling and Control of Vehicle Height for Electronically Controlled Air Suspension 被引量:8
4
作者 SUN Xiaoqiang CAI Yingfeng +2 位作者 WANG Shaohua LIU Yanling CHEN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期152-162,共11页
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on t... The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties. 展开更多
关键词 electronically controlled air suspension vehicle height control hybrid system mixed logical dynamical model predictive control
在线阅读 下载PDF
Research on Dynamic Model's Building of Active Magnetic Suspension Systems 被引量:4
5
作者 施建 颜国正 +1 位作者 李黎川 王坤东 《Journal of Donghua University(English Edition)》 EI CAS 2006年第3期131-135,共5页
An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended und... An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS. 展开更多
关键词 active magnetic suspension feedback control dynamic model building experimental method
在线阅读 下载PDF
MODELING, VALIDATION AND OPTIMAL DESIGN OF THE CLAMPING FORCE CONTROL VALVE USED IN CONTINUOUSLY VARIABLE TRANSMISSION 被引量:4
6
作者 ZHOU Yunshan LIU Jin'gang +1 位作者 CAIYuanchun ZOU Naiwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期51-55,共5页
Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dy... Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece. 展开更多
关键词 dynamic modeling Optimal design Genetic algorithm Clamping force control valve Continuously variable transmission (CVT)
在线阅读 下载PDF
Dynamic Control of Defective Gap Mode Through Defect Location
7
作者 苌磊 李应红 +3 位作者 吴云 张辉洁 王卫民 宋慧敏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第1期1-5,共5页
A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of... A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of spectral gaps equals to the modulation factor,which is consistent with previous studies.For a periodic system with local defects introduced by the boundary conditions,it shows that the conducting-mesh-induced DGM is always well confined by spectral gaps while the conducting-sleeve-induced DGM is not.The defect location can be a useful tool to dynamically control the frequency and spatial periodicity of DGM inside spectral gaps.This controllability can be potentially applied to the interaction between gap eigenmodes and energetic particles in fusion plasmas,and optical microcavities and waveguides in photonic crystals. 展开更多
关键词 defective gap mode boundary condition dynamic control analytical model
在线阅读 下载PDF
A Dual-driven Intelligent Combination Control of Heat Pipe Space Cooling System 被引量:4
8
作者 LI Yunze LI Mingmin LEE Kok Meng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第4期566-574,共9页
Effective thermal control systems are essential for reliable operation of spacecraft.A dual-driven intelligent combination control strategy is proposed to improve the temperate control and heat flux tracking effects.B... Effective thermal control systems are essential for reliable operation of spacecraft.A dual-driven intelligent combination control strategy is proposed to improve the temperate control and heat flux tracking effects.Both temperature regulation and heat flux tracking errors are employed to generate the final control action;their contributions are adaptively adjusted by a fuzzy fusing policy of control actions.To evaluate the control effects,describe a four-nodal mathematical model for analyzing the dynamic characteristics of the controlled heat pipe space cooling system(HP-SCS) consisting of an aluminum-ammonia heat pipe and a variable-emittance micro-electromechanical-system(MEMS) radiator.This dynamical model calculates the mass flow-rate and condensing pressure of the heat pipe working fluid directly from the systemic nodal temperatures,therefore,it is more suitable for control engineering applications.The closed-loop transient performances of four different control schemes have been numerically investigated.The results conclude that the proposed intelligent combination control scheme not only improves the thermal control effects but also benefits the safe operation of HP-SCS. 展开更多
关键词 heat pipe space cooling system dynamic modeling intelligent combination control micro-electromechanical-system
原文传递
Precise control of a magnetically suspended double-gimbal control moment gyroscope using differential geometry decoupling method 被引量:3
9
作者 Chen Xiaocen Chen Maoyin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1017-1028,共12页
Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable, nonlinear and s... Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable, nonlinear and strong coupled properties. This paper proposes a novel linearization and decoupling method based on differential geometry theory and combines it with the internal model controller (IMC) to guarantee the system robustness to the external disturbance and parameter uncertainty. Furthermore, by introducing the dynamic compensation for the inner-gimbal rate-servo system and the magnetically suspended rotor (MSR) system only, we can eliminate the influence of the unmodeled dynamics to the decoupling control accuracy as well as save costs and inhibit noises effectively. The simulation results verify the nice decoupling and robustness performance of the system using the proposed method. 展开更多
关键词 Differential geometry decoupling dynamic compensation Internal model controller MSDGCMG Spacecraft control
原文传递
PATH FOLLOWING GPS-BASED CONTROL OF SMALL-SIZE ROBOTIC UNMANNED BLIMP 被引量:1
10
作者 LUO Jun XIE Shaorong GONG Zhenbang RAO Jinjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期60-63,共4页
Robotic unmanned blimps own an enormous potential for applications in low-speed and low-altitude exploration, surveillance, and monitoring, as well as telecommunication relay platforms. To make lighter-than-air platfo... Robotic unmanned blimps own an enormous potential for applications in low-speed and low-altitude exploration, surveillance, and monitoring, as well as telecommunication relay platforms. To make lighter-than-air platform a robotic blimp with significant levels of autonomy, the decoupled longitude and latitude dynamic model is developed, and the hardware and software of the flight control system are designed and detailed. Flight control and navigation strategy and algorithms for waypoint flight problem are discussed. A result of flight experiment is also presented, which validates that the flight control system is applicable and initial machine intelligence of robotic blimp is achieved. 展开更多
关键词 dynamics modeling Flight control Navigation Robotic unmanned blimp
在线阅读 下载PDF
On the hydrodynamics of hydraulic machinery and flow control 被引量:6
11
作者 陈红勋 马峥 +6 位作者 张伟 朱兵 张睿 魏群 张正川 刘超 何建武 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期782-789,共8页
Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry,... Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry, mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering, etc.. The internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with the rotating dynamic boundary(rotor blade). Based on the analysis of the internal flow characteristics of hydraulic machinery, the author and his research team successively proposed a rotation correction model, a curvature corrected filter-based model, a scalable detached eddy simulation method, and a non-linear hybrid RANS/LES turbulence model to capture unsteady flow structures and then predict hydraulic performance and dynamic characteristics more accurately. According to the analysis on the internal flow, the corresponding flow control measures were put forward. It was verified by experiments that these methods could significantly improve the hydraulic performance, anti-cavitation performance and dynamic characteristics(pressure pulsation and vibration) of hydraulic machinery in a certain range of operating conditions. In addition, the mechanism how flow control measures influence internal flow was analyzed in depth, aiming at finding a feasible and effective way to improve hydraulic performance, anti-cavitation performance and dynamic characteristics of hydraulic machinery. 展开更多
关键词 Hydraulic machinery unsteady flow turbulence model flow control method dynamic characteristic
原文传递
An integrated approach for dynamic traffic routing and ramp metering using sliding mode control 被引量:2
12
作者 Hirsh Majid Chao Lu Hardy Karim 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第2期116-128,共13页
The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model c... The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model called LWR model which is a mathematical traffic flow model that formulates the relationships among traffic flow characteristics in terms of density, flow, and mean speed of the traffic stream. An integrated control algorithm is designed to solve the proposed problem, based on the inverse control technique and variable structure control(super twisting sliding mode). Three case studies have been tested in the presence of an on-ramp at each alternate route and where there is a capacity constraint in the network. In the first case study, there is no capacity constraint at either upstream or downstream of the alternate routes and the function of the proposed algorithm is only to balance the traffic flow on the alternate routes. In the second case study, there is capacity constraint at downstream of alternate routes. The proposed algorithm aims to avoid congestion on the main road and balance the traffic flow on the alternate routes. In the last case study, there is capacity constraint at upstream of alternate routes. The objective of proposed algorithm is to avoid congestion on the main road and to balance the traffic flow on the alternate routes. The obtained results show that the proposed algorithms can establish user equilibrium between two alternate routes even when the on-ramps, located at alternate routes, have different traffic demands. 展开更多
关键词 Highway traffic simulation Macroscopic model Sliding mode control dynamic traffic routing On-ramp metering Integrated control
原文传递
Collision mitigation and vehicle transportation safety using integrated vehicle dynamics control systems
13
作者 Mustafa Elkady Ahmed Elmaralebi +1 位作者 John Maclntyre Mohammed Alhariri 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第1期41-60,共20页
The aim of this paper is to investigate the effect of vehicle dynamics control systems (VDCS) on both the collision of the vehicle body and the kinematic behaviour of the ve- hicle's occupant in case of offset fron... The aim of this paper is to investigate the effect of vehicle dynamics control systems (VDCS) on both the collision of the vehicle body and the kinematic behaviour of the ve- hicle's occupant in case of offset frontal vehicle-to-vehicle collision. A unique 6-degree-of- freedom (6-DOF) vehicle dynamics/crash mathematical model and a simplified lumped mass occupant model are developed. The first model is used to define the vehicle body crash parameters and it integrates a vehicle dynamics model with a vehicle front-end structure model. The second model aims to predict the effect of VDCS on the kinematics of the occupant. It is shown from the numerical simulations that the vehicle dynamics/crash response and occupant behaviour can be captured and analysed quickly and accurately. Yurthermore, it is shown that the VDCS can affect the crash characteristics positively and the occupant behaviour is improved. 展开更多
关键词 Vehicle transportation safety Collision mitigation Vehicle dynamics and control Mathematical modelling Occupant kinematics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部