The existence of the aeroengine casing,limited monitoring points,and multi-fault characteristics make obtaining the rotor’s vibration transmission characteristics challenging,resulting in difficulties accurately iden...The existence of the aeroengine casing,limited monitoring points,and multi-fault characteristics make obtaining the rotor’s vibration transmission characteristics challenging,resulting in difficulties accurately identifying the rotor unbalance.This paper utilizes a high-frequency composite sensor to monitor the engine’s blade tip clearance(BTC)and extracts unbalanced information from BTC signals for rotor dynamic balancing,while avoiding the need for the once per revolution(OPR)sensor.First,the vibration characteristics of the rotor-blade system under multi-fault conditions are investigated.Then,based on BTC measurement,a none OPR method and an unbalance identification method are proposed,in which the radial vibration of the blade tip in the BTC signals at different speeds is extracted and operated in the time domain to obtain the rotor unbalanced vibration,the signal is reconstructed,and cross-correlation analysis is used to accurately identify the magnitude and phase of the unbalanced signal.Finally,a rotor test bench is utilized for experimental verification.The results reveal that the dynamic balancing method based on the BTC signal can more precisely identify the rotor unbalance than the traditional rotor dynamic balancing method.The application of this technique will effectively improve engine health management and fault prediction.展开更多
Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC). Focusing on the two problems that the moment estimator of data used in cali...Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC). Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process, an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed. During calibration process, for the repeatedly-measured data obtained from experiments with different trial weights, according to the fact that measurement error of each sensor had the same statistical characteristics, the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established. During the updating process, information obtained from calibration was regarded as prior information, which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating. Moreover, Gibbs sampling method of Markov Chain Monte Carlo(MCMC) was adopted to obtain the maximum posterior estimation of parameters to be estimated. On the independent developed dynamic balancing testbed, prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively, the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy; the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process, and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response.展开更多
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona...A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.展开更多
Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very lit...Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very little difference in rotating speeds. Magnitudes and phase values of unbalance defects can be obtained directly by sampling the vibration signal synchronized with reference signal. The balancing process is completed by the reciprocity influence coefficients of inner and outer rotors method. Results showed the advantage of such method for a dual-rotor system as compared with conventional balancing.展开更多
Influence coefficient method and the modal balancing method are often used in the dynamic balancing in the past days. These methods sometimes exist a lot of big measurement errors. So, in order to make these errors mu...Influence coefficient method and the modal balancing method are often used in the dynamic balancing in the past days. These methods sometimes exist a lot of big measurement errors. So, in order to make these errors much smaller, and to use the vibration information of the rotor more sufficiently, at last, we put forward the full vector dynamic balancing algorithm. Though the theoretical analysis, and the experiment tests, we can compare with the new method and the old method , study the relationship between the dynamic balancing and the rotation equipment, and the direction of the development. The full vector dynamic balancing algorithm theory can be inferred from the Jeffcott rotor. To compare with the methods which are mentioned before, we can find that the full vector dynamic balancing algorithm is much better than the influence coefficient method and the modal balancing method. We can use the MATLAB program to prove that the full vector dynamic balancing algorithm is much better. So the conclusion is completely right.展开更多
To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve ...To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.展开更多
In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The appro...In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.展开更多
To decrease the cost of exchanging load information among processors, a dynamic load-balancing (DLB) algorithm which adopts multieast tree technology is proposed. The muhieast tree construction rules are also propos...To decrease the cost of exchanging load information among processors, a dynamic load-balancing (DLB) algorithm which adopts multieast tree technology is proposed. The muhieast tree construction rules are also proposed to avoid wrongly transferred or redundant DLB messages due to the overlapping of multicast trees. The proposed DLB algorithm is distributed controlled, sender initiated and can help heavily loaded processors with complete distribution of redundant loads with minimum number of executions. Experiments were executed to compare the effects of the proposed DLB algorithm and other three ones, the results prove the effectivity and practicability of the proposed algorithm in dealing with great scale compute-intensive tasks.展开更多
The rapid growth of interconnected high performance workstations has produced a new computing paradigm called clustered of workstations computing. In these systems load balance problem is a serious impediment to achie...The rapid growth of interconnected high performance workstations has produced a new computing paradigm called clustered of workstations computing. In these systems load balance problem is a serious impediment to achieve good performance. The main concern of this paper is the implementation of dynamic load balancing algorithm, asynchronous Round Robin (ARR), for balancing workload of parallel tree computation depth-first-search algorithm on Cluster of Heterogeneous Workstations (COW) Many algorithms in artificial intelligence and other areas of computer science are based on depth first search in implicitty defined trees. For these algorithms a load-balancing scheme is required, which is able to evenly distribute parts of an irregularly shaped tree over the workstations with minimal interprocessor communication and without prior knowledge of the tree’s shape. For the (ARR) algorithm only minimal interprocessor communication is needed when necessary and it runs under the MPI (Message passing interface) that allows parallel execution on heterogeneous SUN cluster of workstation platform. The program code is written in C language and executed under UNIX operating system (Solaris version).展开更多
This paper proposes a dynamic load balancing with learning model for a Sudoku problem solving system that has multiple workers and multiple solvers.The objective is to minimise the total processing time of problem sol...This paper proposes a dynamic load balancing with learning model for a Sudoku problem solving system that has multiple workers and multiple solvers.The objective is to minimise the total processing time of problem solving.Our load balancing with learning model distributes each Sudoku problem to an appropriate pair of worker and solver when it is received by the system.The information of the estimated solution time for a specific number of given input values,the estimated finishing time of each worker,and the idle status of each worker is used to determine the worker-solver pairs.In addition,the proposed system can estimate the waiting period for each problem.Test results show that the system has shorter processing time than conventional alternatives.展开更多
Agricultural trade promotes the transfer of water resources,which has an impact on regional water scarcity,particularly in arid regions.Nevertheless,the understanding of how agricultural trade influences water scarcit...Agricultural trade promotes the transfer of water resources,which has an impact on regional water scarcity,particularly in arid regions.Nevertheless,the understanding of how agricultural trade influences water scarcity and the populations under different water scarcity levels is still insufficient.This study examines the impact of domestic agricultural(food crop)trade on water scarcity in Northwest China by integrating a grid-based dynamic water balance model with a linear programming model.The results indicate that the agricultural blue water(surface and groundwater)footprint and green water(soil water)footprint in the Northwest region peaked in 2014,with the green water footprint being 17%higher than the blue water footprint.The increase in trade volume has effectively alleviated water scarcity in Northwest China,with green water playing a greater role than blue water,especially in Shaanxi and Ningxia.As trade volumes rise,the population facing mild water scarcity continues to grow after trade,with increases of 4.56%,6.70%,and 5.36%in 2000,2010 and 2014.Agricultural trade significantly alleviates the pressure of severe water scarcity and boosts the region's population carrying capacity.This study provides scientific evidence to support stronger coordination of water resources between regions,especially agricultural water trade between water-rich and water-scarce areas,and to inform the formulation of rational allocation policies for balancing regional water resource distribution and benefits.展开更多
High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation ba...High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.展开更多
This paper further explores the estimating and expressing of dynamic balance constraints using statistical methods in GRAPES-3DVAR(Version GM). Unlike the single-level scheme which only considers the coupling between ...This paper further explores the estimating and expressing of dynamic balance constraints using statistical methods in GRAPES-3DVAR(Version GM). Unlike the single-level scheme which only considers the coupling between mass and wind at one level, the multi-level scheme considers the coupling between their vertical profiles and calculates the balanced mass field at each layer using the rotational wind at all model levels. A reformed ridge regression method is used in the new scheme to avoid the multicollinearity problem and reduce the noises caused by unbalanced mesoscale disturbances. The results of numerical experiments show that the new scheme can get more reasonable vertical mass field, reduce the magnitude of the adjustment by the initialization, and improve the potential temperature analysis performance. Furthermore, the results of forecast verification in January(winter) and July(summer) both confirm that the new scheme can significantly improve the temperature forecast accuracy and bring slight positive effects to the pressure and wind forecast.展开更多
The basic structure of epicyclical gear transmission with inner teeth ofsingle-ring, double-ring, three-ring and four-ring reducer are analyzed. The force analysis model ofring reducer is built. Following this, it is ...The basic structure of epicyclical gear transmission with inner teeth ofsingle-ring, double-ring, three-ring and four-ring reducer are analyzed. The force analysis model ofring reducer is built. Following this, it is concluded that the present ring reducer~ have theproblem that the inertia force or the inertia moment is lopsided. On the base of analysis andcalculation the balanced ring reducer which can realize the balance of inertia force and inertiamoment is brought forward, and so is its concrete realizing step. The specimen of the balanced ringreducer is designed and manufactured; the experiment is carried out on the gear transmission testbench. Compared with other ring reducer of the same power, the balanced ring reducer has manyadvantages, such as low vibration noise, low cost and less production difficulty and less heat. Itis the substitute of other ring reducer of the same kind. Therefore, it has important theoreticsignificance and highly practical engineering value.展开更多
Phosphorus(P) is an important macronutrient for plant but can also cause potential environmental risk. In this paper, we studied the long-term fertilizer experiment(started 1980) to assess the soil P dynamic, bala...Phosphorus(P) is an important macronutrient for plant but can also cause potential environmental risk. In this paper, we studied the long-term fertilizer experiment(started 1980) to assess the soil P dynamic, balance, critical P value and the crop yield response in Taihu Lake region, China. To avoid the effect of nitrogen(N) and potassium(K), only the following treatments were chosen for subsequent discussion, including: C0(control treatment without any fertilizer or organic manure), CNK treatment(mineral N and K only), CNPK(balanced fertilization with mineral N, P and K), MNK(integrated organic manure and mineral N and K), and MNPK(organic manure plus balanced fertilization). The results revealed that the response of wheat yield was more sensitive than rice, and no significant differences of crop yield had been detected among MNK, CNPK and MNPK until 2013. Dynamic and balance of soil total P(TP) and Olsen-P showed soil TP pool was enlarged significantly over consistent fertilization. However, the diminishing marginal utility of soil Olsen-P was also found, indicating that high-level P application in the present condition could not increase soil Olsen-P contents anymore. Linear-linear and Mitscherlich models were used to estimate the critical value of Olsen-P for crops. The average critical P value for rice and wheat was 3.40 and 4.08 mg kg^(–1), respectively. The smaller critical P value than in uplands indicated a stronger ability of P supply for crops in this paddy soil. We concluded that no more mineral P should be applied in rice-wheat system in Taihu Lake region if soil Olsen-P is higher than the critical P value. The agricultural technique and management referring to activate the plant-available P pool are also considerable, such as integrated use of low-P organic manure with mineral N and K.展开更多
The dynamic balance quality of a rotating object is an important factor to maintain the stability and accuracy for motion. The azimuth of the principal axis of inertia is a major sign of dynamic balance. A usual metho...The dynamic balance quality of a rotating object is an important factor to maintain the stability and accuracy for motion. The azimuth of the principal axis of inertia is a major sign of dynamic balance. A usual method is measuring moment of inertia matrix relative to some base coordinates on a rotary inertia machine so as to calculate the azimuth of principal axis of inertia, By using the measured unbalance results on the two trimmed planes on a vertical hard bearing double-plane dynamic balancing machine, the dimension and direction of couple unbalance can be found. An azimuth angle formula for the principal axis of inertia is derived and is solved by using unbalance quantities. The experiments indicate that method based on dynamic balancing measurement is proved rational and effective and has a fine precision.展开更多
Flow field in multilayer gob area, which formed in small hiden-depth, multi-coal layer groups, close distance, hard coal layer, and hard roof, possesses characteristics such as complex, changeable and unstable. Dynami...Flow field in multilayer gob area, which formed in small hiden-depth, multi-coal layer groups, close distance, hard coal layer, and hard roof, possesses characteristics such as complex, changeable and unstable. Dynamic balance theory of local flow field in multilayer gob area was built based on the realistic requirement that the serious threat on current mining coal layer by large-scale spontaneous combustion fire on close spontaneous combustion coal layer group of Datong Coal mining area at the 'di-hard' conditions was caused by small coal pit mining. The kernel was in dynamic balance between flow field pressures of working face and local flow field in multilayer gob area was kept by transformation. Corresponding technology and set of devices were developed.展开更多
The parallel computation capabilities of modern graphics processing units (GPUs) have attracted increasing attention from researchers and engineers who have been conducting high computational throughput studies. How...The parallel computation capabilities of modern graphics processing units (GPUs) have attracted increasing attention from researchers and engineers who have been conducting high computational throughput studies. However, current single GPU based engineering solutions are often struggling to fulfill their real-time requirements. Thus, the multi-GPU-based approach has become a popular and cost-effective choice for tackling the demands. In those cases, the computational load balancing over multiple GPU "nodes" is often the key and bottleneck that affect the quality and performance of the real=time system. The existing load balancing approaches are mainly based on the assumption that all GPU nodes in the same computer framework are of equal computational performance, which is often not the case due to cluster design and other legacy issues. This paper presents a novel dynamic load balancing (DLB) model for rapid data division and allocation on heterogeneous GPU nodes based on an innovative fuzzy neural network (FNN). In this research, a 5-state parameter feedback mechanism defining the overall cluster and node performance is proposed. The corresponding FNN-based DLB model will be capable of monitoring and predicting individual node performance under different workload scenarios. A real=time adaptive scheduler has been devised to reorganize the data inputs to each node when necessary to maintain their runtime computational performance. The devised model has been implemented on two dimensional (2D) discrete wavelet transform (DWT) applications for evaluation. Experiment results show that this DLB model enables a high computational throughput while ensuring real=time and precision requirements from complex computational tasks.展开更多
At age 5,children with trisomy 21 have roughly 2 years of delayed motor development.We aimed to verify if children with trisomy 21(AD)(N=6,7.67±1.51 years)had a similar performance to children with a typical deve...At age 5,children with trisomy 21 have roughly 2 years of delayed motor development.We aimed to verify if children with trisomy 21(AD)(N=6,7.67±1.51 years)had a similar performance to children with a typical development(TD)(N=37,5.19±0.40 years old),in a playful motor action(to spin on herself until she cannot get more).On average,ADs gave less laps,for less time,spending more time per rotation,but without significant difference.Of the AD,one-third fell and rose to continue to spin;one-third stopped and resumed spinning(with intervals of 2.05±0.86s).Three ADs performed the action counterclockwise and the other three in clockwise direction.The results support the hypothesis that AD can perform the activity of spinning,with DT(significantly)younger,allowing to AD momentary pauses and conditions for their physical security.展开更多
When humanoid robots attempt to walk on terrain such as shaking platforms,time-varying disturbances are introduced to the support foot.These abrupt changes of inclination angle can cause the robot to lose balance upon...When humanoid robots attempt to walk on terrain such as shaking platforms,time-varying disturbances are introduced to the support foot.These abrupt changes of inclination angle can cause the robot to lose balance upon landing,presenting significant challenges for balance control algorithms.To address this issue,we propose a novel divergent component of motion(DCM)-based time-varying disturbance walking(DCM-TVDW)method.This method allows the robot to walk on rugged surfaces and helps to maintain dynamic balance when subjected to large time-varying disturbances.In the DCM-TVDW control method,we first adjust the robot's center of mass and stride height to adapt to transitions between different terrain types via a variable height stabilization method,and hold these quantities constant as base values.We then combine DCM with the N-step capturability strategy.This combination allows for dynamic balance through multi-step adjustments from the initially unstable region,thereby extending the robots stability boundary.Simulation and experimental results demonstrate that the DCM-TVDW method enables the SJ-Bruce robot to traverse a dynamically shaking platform with an inclination angle of approximately 22°.展开更多
基金supported by the Key Program of National Natural Science Foundation of China(No.92160203)National Natural Science Foundation of China(No.92360306).
文摘The existence of the aeroengine casing,limited monitoring points,and multi-fault characteristics make obtaining the rotor’s vibration transmission characteristics challenging,resulting in difficulties accurately identifying the rotor unbalance.This paper utilizes a high-frequency composite sensor to monitor the engine’s blade tip clearance(BTC)and extracts unbalanced information from BTC signals for rotor dynamic balancing,while avoiding the need for the once per revolution(OPR)sensor.First,the vibration characteristics of the rotor-blade system under multi-fault conditions are investigated.Then,based on BTC measurement,a none OPR method and an unbalance identification method are proposed,in which the radial vibration of the blade tip in the BTC signals at different speeds is extracted and operated in the time domain to obtain the rotor unbalanced vibration,the signal is reconstructed,and cross-correlation analysis is used to accurately identify the magnitude and phase of the unbalanced signal.Finally,a rotor test bench is utilized for experimental verification.The results reveal that the dynamic balancing method based on the BTC signal can more precisely identify the rotor unbalance than the traditional rotor dynamic balancing method.The application of this technique will effectively improve engine health management and fault prediction.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008 AA04Z114)
文摘Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC). Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process, an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed. During calibration process, for the repeatedly-measured data obtained from experiments with different trial weights, according to the fact that measurement error of each sensor had the same statistical characteristics, the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established. During the updating process, information obtained from calibration was regarded as prior information, which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating. Moreover, Gibbs sampling method of Markov Chain Monte Carlo(MCMC) was adopted to obtain the maximum posterior estimation of parameters to be estimated. On the independent developed dynamic balancing testbed, prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively, the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy; the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process, and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response.
基金Project supported by the National Natural Science Foundation of China (No.10176011).
文摘A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
文摘Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very little difference in rotating speeds. Magnitudes and phase values of unbalance defects can be obtained directly by sampling the vibration signal synchronized with reference signal. The balancing process is completed by the reciprocity influence coefficients of inner and outer rotors method. Results showed the advantage of such method for a dual-rotor system as compared with conventional balancing.
文摘Influence coefficient method and the modal balancing method are often used in the dynamic balancing in the past days. These methods sometimes exist a lot of big measurement errors. So, in order to make these errors much smaller, and to use the vibration information of the rotor more sufficiently, at last, we put forward the full vector dynamic balancing algorithm. Though the theoretical analysis, and the experiment tests, we can compare with the new method and the old method , study the relationship between the dynamic balancing and the rotation equipment, and the direction of the development. The full vector dynamic balancing algorithm theory can be inferred from the Jeffcott rotor. To compare with the methods which are mentioned before, we can find that the full vector dynamic balancing algorithm is much better than the influence coefficient method and the modal balancing method. We can use the MATLAB program to prove that the full vector dynamic balancing algorithm is much better. So the conclusion is completely right.
基金The National Natural Science Foundation of China(No.69973007).
文摘To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.
基金supported by the National Natural Science Foundation of China(No.61163058No.61201250 and No.61363006)Guangxi Key Laboratory of Trusted Software(No.KX201306)
文摘In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.
基金the National Natural Science Foundation of China(69973007)
文摘To decrease the cost of exchanging load information among processors, a dynamic load-balancing (DLB) algorithm which adopts multieast tree technology is proposed. The muhieast tree construction rules are also proposed to avoid wrongly transferred or redundant DLB messages due to the overlapping of multicast trees. The proposed DLB algorithm is distributed controlled, sender initiated and can help heavily loaded processors with complete distribution of redundant loads with minimum number of executions. Experiments were executed to compare the effects of the proposed DLB algorithm and other three ones, the results prove the effectivity and practicability of the proposed algorithm in dealing with great scale compute-intensive tasks.
文摘The rapid growth of interconnected high performance workstations has produced a new computing paradigm called clustered of workstations computing. In these systems load balance problem is a serious impediment to achieve good performance. The main concern of this paper is the implementation of dynamic load balancing algorithm, asynchronous Round Robin (ARR), for balancing workload of parallel tree computation depth-first-search algorithm on Cluster of Heterogeneous Workstations (COW) Many algorithms in artificial intelligence and other areas of computer science are based on depth first search in implicitty defined trees. For these algorithms a load-balancing scheme is required, which is able to evenly distribute parts of an irregularly shaped tree over the workstations with minimal interprocessor communication and without prior knowledge of the tree’s shape. For the (ARR) algorithm only minimal interprocessor communication is needed when necessary and it runs under the MPI (Message passing interface) that allows parallel execution on heterogeneous SUN cluster of workstation platform. The program code is written in C language and executed under UNIX operating system (Solaris version).
文摘This paper proposes a dynamic load balancing with learning model for a Sudoku problem solving system that has multiple workers and multiple solvers.The objective is to minimise the total processing time of problem solving.Our load balancing with learning model distributes each Sudoku problem to an appropriate pair of worker and solver when it is received by the system.The information of the estimated solution time for a specific number of given input values,the estimated finishing time of each worker,and the idle status of each worker is used to determine the worker-solver pairs.In addition,the proposed system can estimate the waiting period for each problem.Test results show that the system has shorter processing time than conventional alternatives.
基金supported by the Tianshan Talents Program of Xinjiang Uygur Autonomous Region(2022TSYCJU0002)the Basic and cross-cutting frontier scientific research pilot projects of Chinese Academy of Sciences(XDB0720100)+3 种基金the Major Science and Technology Special Project of Xinjiang Uygur Autonomous Region-Research and demonstration of nature-based restoration and conservation technology for degraded vegetation in the desert-oasis ecotone(2024A03009-4)the original innovation project of the basic frontier scientific research program,Chinese Academy of Sciences(ZDBS-LY-DQC031)the water system evolution and risk assessment in arid regions for original innovation project of institute(2023-2025)the Outstanding Member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019)(2024-2026).
文摘Agricultural trade promotes the transfer of water resources,which has an impact on regional water scarcity,particularly in arid regions.Nevertheless,the understanding of how agricultural trade influences water scarcity and the populations under different water scarcity levels is still insufficient.This study examines the impact of domestic agricultural(food crop)trade on water scarcity in Northwest China by integrating a grid-based dynamic water balance model with a linear programming model.The results indicate that the agricultural blue water(surface and groundwater)footprint and green water(soil water)footprint in the Northwest region peaked in 2014,with the green water footprint being 17%higher than the blue water footprint.The increase in trade volume has effectively alleviated water scarcity in Northwest China,with green water playing a greater role than blue water,especially in Shaanxi and Ningxia.As trade volumes rise,the population facing mild water scarcity continues to grow after trade,with increases of 4.56%,6.70%,and 5.36%in 2000,2010 and 2014.Agricultural trade significantly alleviates the pressure of severe water scarcity and boosts the region's population carrying capacity.This study provides scientific evidence to support stronger coordination of water resources between regions,especially agricultural water trade between water-rich and water-scarce areas,and to inform the formulation of rational allocation policies for balancing regional water resource distribution and benefits.
基金supported by National Science and Technology Support Program of China (Grant No. 2012BAF15G00)
文摘High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.
基金China Special Fund for Meteorological Research in the Public Interest(GYHY201106008,GYHY201506003)China Meteorological Administration Special Fund for the Development of Numerical Weather Prediction(GRAPES)Research Innovation Program for College Graduates of Jiangsu Province(CXZZ13_0497)
文摘This paper further explores the estimating and expressing of dynamic balance constraints using statistical methods in GRAPES-3DVAR(Version GM). Unlike the single-level scheme which only considers the coupling between mass and wind at one level, the multi-level scheme considers the coupling between their vertical profiles and calculates the balanced mass field at each layer using the rotational wind at all model levels. A reformed ridge regression method is used in the new scheme to avoid the multicollinearity problem and reduce the noises caused by unbalanced mesoscale disturbances. The results of numerical experiments show that the new scheme can get more reasonable vertical mass field, reduce the magnitude of the adjustment by the initialization, and improve the potential temperature analysis performance. Furthermore, the results of forecast verification in January(winter) and July(summer) both confirm that the new scheme can significantly improve the temperature forecast accuracy and bring slight positive effects to the pressure and wind forecast.
基金This project is supported by National Natural Science Foundation of China (No.50005025) Open Foundation of State Key Laboratory of Vibration, Strike and Noise, China (No.VSN-2002-01).
文摘The basic structure of epicyclical gear transmission with inner teeth ofsingle-ring, double-ring, three-ring and four-ring reducer are analyzed. The force analysis model ofring reducer is built. Following this, it is concluded that the present ring reducer~ have theproblem that the inertia force or the inertia moment is lopsided. On the base of analysis andcalculation the balanced ring reducer which can realize the balance of inertia force and inertiamoment is brought forward, and so is its concrete realizing step. The specimen of the balanced ringreducer is designed and manufactured; the experiment is carried out on the gear transmission testbench. Compared with other ring reducer of the same power, the balanced ring reducer has manyadvantages, such as low vibration noise, low cost and less production difficulty and less heat. Itis the substitute of other ring reducer of the same kind. Therefore, it has important theoreticsignificance and highly practical engineering value.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest of China(201203030)the Science and Technology Support Program of Jiangsu,China(BE2013334)the Agricultural Science&Technology Innovation Foundation of Jiangsu Province,China(CX(14)5085)
文摘Phosphorus(P) is an important macronutrient for plant but can also cause potential environmental risk. In this paper, we studied the long-term fertilizer experiment(started 1980) to assess the soil P dynamic, balance, critical P value and the crop yield response in Taihu Lake region, China. To avoid the effect of nitrogen(N) and potassium(K), only the following treatments were chosen for subsequent discussion, including: C0(control treatment without any fertilizer or organic manure), CNK treatment(mineral N and K only), CNPK(balanced fertilization with mineral N, P and K), MNK(integrated organic manure and mineral N and K), and MNPK(organic manure plus balanced fertilization). The results revealed that the response of wheat yield was more sensitive than rice, and no significant differences of crop yield had been detected among MNK, CNPK and MNPK until 2013. Dynamic and balance of soil total P(TP) and Olsen-P showed soil TP pool was enlarged significantly over consistent fertilization. However, the diminishing marginal utility of soil Olsen-P was also found, indicating that high-level P application in the present condition could not increase soil Olsen-P contents anymore. Linear-linear and Mitscherlich models were used to estimate the critical value of Olsen-P for crops. The average critical P value for rice and wheat was 3.40 and 4.08 mg kg^(–1), respectively. The smaller critical P value than in uplands indicated a stronger ability of P supply for crops in this paddy soil. We concluded that no more mineral P should be applied in rice-wheat system in Taihu Lake region if soil Olsen-P is higher than the critical P value. The agricultural technique and management referring to activate the plant-available P pool are also considerable, such as integrated use of low-P organic manure with mineral N and K.
文摘The dynamic balance quality of a rotating object is an important factor to maintain the stability and accuracy for motion. The azimuth of the principal axis of inertia is a major sign of dynamic balance. A usual method is measuring moment of inertia matrix relative to some base coordinates on a rotary inertia machine so as to calculate the azimuth of principal axis of inertia, By using the measured unbalance results on the two trimmed planes on a vertical hard bearing double-plane dynamic balancing machine, the dimension and direction of couple unbalance can be found. An azimuth angle formula for the principal axis of inertia is derived and is solved by using unbalance quantities. The experiments indicate that method based on dynamic balancing measurement is proved rational and effective and has a fine precision.
基金Supported by the Key Projects of the National Natural Science Foundation of China (50834002)
文摘Flow field in multilayer gob area, which formed in small hiden-depth, multi-coal layer groups, close distance, hard coal layer, and hard roof, possesses characteristics such as complex, changeable and unstable. Dynamic balance theory of local flow field in multilayer gob area was built based on the realistic requirement that the serious threat on current mining coal layer by large-scale spontaneous combustion fire on close spontaneous combustion coal layer group of Datong Coal mining area at the 'di-hard' conditions was caused by small coal pit mining. The kernel was in dynamic balance between flow field pressures of working face and local flow field in multilayer gob area was kept by transformation. Corresponding technology and set of devices were developed.
基金supported by National Natural Science Foundation of China(No.61203172)the SSTP of Sichuan(Nos.2018YYJC0994 and 2017JY0011)Shenzhen STPP(No.GJHZ20160301164521358)
文摘The parallel computation capabilities of modern graphics processing units (GPUs) have attracted increasing attention from researchers and engineers who have been conducting high computational throughput studies. However, current single GPU based engineering solutions are often struggling to fulfill their real-time requirements. Thus, the multi-GPU-based approach has become a popular and cost-effective choice for tackling the demands. In those cases, the computational load balancing over multiple GPU "nodes" is often the key and bottleneck that affect the quality and performance of the real=time system. The existing load balancing approaches are mainly based on the assumption that all GPU nodes in the same computer framework are of equal computational performance, which is often not the case due to cluster design and other legacy issues. This paper presents a novel dynamic load balancing (DLB) model for rapid data division and allocation on heterogeneous GPU nodes based on an innovative fuzzy neural network (FNN). In this research, a 5-state parameter feedback mechanism defining the overall cluster and node performance is proposed. The corresponding FNN-based DLB model will be capable of monitoring and predicting individual node performance under different workload scenarios. A real=time adaptive scheduler has been devised to reorganize the data inputs to each node when necessary to maintain their runtime computational performance. The devised model has been implemented on two dimensional (2D) discrete wavelet transform (DWT) applications for evaluation. Experiment results show that this DLB model enables a high computational throughput while ensuring real=time and precision requirements from complex computational tasks.
基金This study was partially supported by the Portuguese Foundation for Science and Technology,I.P.under Grant number UIDP/04748/2020.
文摘At age 5,children with trisomy 21 have roughly 2 years of delayed motor development.We aimed to verify if children with trisomy 21(AD)(N=6,7.67±1.51 years)had a similar performance to children with a typical development(TD)(N=37,5.19±0.40 years old),in a playful motor action(to spin on herself until she cannot get more).On average,ADs gave less laps,for less time,spending more time per rotation,but without significant difference.Of the AD,one-third fell and rose to continue to spin;one-third stopped and resumed spinning(with intervals of 2.05±0.86s).Three ADs performed the action counterclockwise and the other three in clockwise direction.The results support the hypothesis that AD can perform the activity of spinning,with DT(significantly)younger,allowing to AD momentary pauses and conditions for their physical security.
基金supported by Jiangsu Provincial Science and Technology Department Program Special Funds(Basic Research on Frontier Leading Technologies)Project(Grant No.BK20232031)。
文摘When humanoid robots attempt to walk on terrain such as shaking platforms,time-varying disturbances are introduced to the support foot.These abrupt changes of inclination angle can cause the robot to lose balance upon landing,presenting significant challenges for balance control algorithms.To address this issue,we propose a novel divergent component of motion(DCM)-based time-varying disturbance walking(DCM-TVDW)method.This method allows the robot to walk on rugged surfaces and helps to maintain dynamic balance when subjected to large time-varying disturbances.In the DCM-TVDW control method,we first adjust the robot's center of mass and stride height to adapt to transitions between different terrain types via a variable height stabilization method,and hold these quantities constant as base values.We then combine DCM with the N-step capturability strategy.This combination allows for dynamic balance through multi-step adjustments from the initially unstable region,thereby extending the robots stability boundary.Simulation and experimental results demonstrate that the DCM-TVDW method enables the SJ-Bruce robot to traverse a dynamically shaking platform with an inclination angle of approximately 22°.