Knowledge plays an active role in job-shop scheduling, especially in dynamic environments. A novel case-based immune framework was developed for static and dynamic job-shop problems, using the associative memory and k...Knowledge plays an active role in job-shop scheduling, especially in dynamic environments. A novel case-based immune framework was developed for static and dynamic job-shop problems, using the associative memory and knowledge reuse from case-based reasoning (CBR) and immune response mechanisms. A 2-level similarity index which combines both job routing and problem solution characteristics based on DNA matching ideas was defined for both the CBR and immune algorithms. A CBR-embedded immune algorithms (CBR-IAs) framework was then developed focusing on case retrieval and adaptation methods. In static environments, the CBR-IAs have excellent population diversity and fast convergence which are necessary for dynamic problems with jobs arriving and leaving continually. The results with dy-namic scheduling problems further confirm the CBR-IAs effectiveness as a problem solving method with knowledge reuse.展开更多
Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of a...Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.展开更多
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in...Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.展开更多
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain e...This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.展开更多
One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consider...One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.展开更多
Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling ...Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed.The relevant algorithm, pheromone-based dynamic real-time scheduling algorithm (PBDR), is given.MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out),SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules,i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior toFIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery,especially for on-time delivery performance.展开更多
The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiti...The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiting caused by automated guided vehicles(AGVs)delay in the uncertain environment can be alleviated by dynamic scheduling optimization.A dynamic scheduling process is introduced in this paper to solve the AGV scheduling and path planning problems,in which the scheduling scheme determines the starting and ending nodes of paths,and the choice of paths between nodes affects the scheduling of subsequent AGVs.This work proposes a two-stage mixed integer optimization model to minimize the transportation cost of AGVs under the constraint of laytime.A dynamic optimization algorithm,including the improved rule-based heuristic algorithm and the integration of the Dijkstra algorithm and the Q-Learning algorithm,is designed to solve the optimal AGV scheduling and path schemes.A new conflict avoidance strategy based on graph theory is also proposed to reduce the probability of path conflicts between AGVs.Numerical experiments are conducted to demonstrate the effectiveness of the proposed model and algorithm over existing methods.展开更多
Due to no effective rescheduling method in hull curved block construction planning, existing scheduling planning can’t be applied in practical production effectively. Two-dimensional layout and dynamic attributes of ...Due to no effective rescheduling method in hull curved block construction planning, existing scheduling planning can’t be applied in practical production effectively. Two-dimensional layout and dynamic attributes of block construction planning are considered to develop a spatial rescheduling method, which is based on the spatial points searching rule and the particle swarm optimization(PSO) algorithm. A dynamic spatial rescheduling method is proposed to solve the manufacturing problem of rush-order blocks. Through spatial rescheduling, the rescheduling start time, the current processing information set and rescheduling blocks set can be obtained automatically. By using and updating the data of these sets, the rescheduling method combines the PSO algorithm with the spatial points searching rule to determine the rescheduling start time and layout of the blocks. Three types of dynamic events, including rush-order block delay, existing block delay and existing block position changes, are used to address problems with different function goals by setting different function weights. Finally, simulations based on three types of rush-order block events are performed to validate this method, including single rush-order block, multi rush-order blocks at the same time and multi rush-order blocks at different times. The simulation results demonstrate that this method can solve the rush-order block problems in hull block construction and reduce the interference to the existing manufacturing schedule. The proposed research provides a new rescheduling method and helps instruct scheduler to make production planning in hull block construction.展开更多
In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power ...In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power integrated systems. A dynamic solving method blended with particle swarm optimization algorithm is proposed. In this method, the solution space of the states of unit commitment is created and will be updated when the status of unit commitment changes in a period to meet the spinning reserve demand. The thermal unit operation constrains are inspected in adjacent time intervals to ensure all the states in the solution space effective. The particle swarm algorithm is applied in the procedure to optimize the load distribution of each unit commitment state. A case study in a simulation system is finally given to verify the feasibility and effectiveness of this dynamic optimization algorithm.展开更多
Prior research on the resilience of critical infrastructure usually utilizes the network model to characterize the structure of the components so that a quantitative representation of resilience can be obtained. Parti...Prior research on the resilience of critical infrastructure usually utilizes the network model to characterize the structure of the components so that a quantitative representation of resilience can be obtained. Particularly, network component importance is addressed to express its significance in shaping the resilience performance of the whole system. Due to the intrinsic complexity of the problem, some idealized assumptions are exerted on the resilience-optimization problem to find partial solutions. This paper seeks to exploit the dynamic aspect of system resilience, i.e., the scheduling problem of link recovery in the post-disruption phase.The aim is to analyze the recovery strategy of the system with more practical assumptions, especially inhomogeneous time cost among links. In view of this, the presented work translates the resilience-maximization recovery plan into the dynamic decisionmaking of runtime recovery option. A heuristic scheme is devised to treat the core problem of link selection in an ongoing style.Through Monte Carlo simulation, the link recovery order rendered by the proposed scheme demonstrates excellent resilience performance as well as accommodation with uncertainty caused by epistemic knowledge.展开更多
A dynamic database based dynamic scheduling system is proposed.As the schedule is being preformed, the scheduling task data in the dynamic database is updated timely.Genetic algorithm (GA) is employed for generating o...A dynamic database based dynamic scheduling system is proposed.As the schedule is being preformed, the scheduling task data in the dynamic database is updated timely.Genetic algorithm (GA) is employed for generating optimised production plan quickly and easily in response to changes on the shop floor. The current status of the shop is considered while rescheduling, and new plan is used in conjunction with the existing schedule to improve the effeciency of flexble manufacturing systems. Simulation results demonstrate the effectiveness of the proposed system.展开更多
In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower...In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field(LGVF)approach for improving the precision of surveillance trajectory tracking.Then,in order to adopt to poor communication conditions,we propose a prediction-based synchronization method for keeping the formation consistently.Moreover,in order to adapt the multi-UAV system to dynamic and uncertain environment,this paper proposes a hierarchical dynamic task scheduling architecture.In this architecture,we firstly classify all the algorithms that perform tasks according to their functions,and then modularize the algorithms based on plugin technology.Afterwards,integrating the behavior model and plugin technique,this paper designs a three-layer control flow,which can efficiently achieve dynamic task scheduling.In order to verify the effectiveness of our architecture,we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels,respectively.展开更多
The by-product gases, which are generated in ironmaking, coking and steel making processes, can be used as fuel for the metallurgical processes and on-site power plants. However, if the supply and demand of by-product...The by-product gases, which are generated in ironmaking, coking and steel making processes, can be used as fuel for the metallurgical processes and on-site power plants. However, if the supply and demand of by-product gases are imbalanced, gas flaring may occur, leading to energy wastage and environmental pollution. Therefore, optimal scheduling of by-product gases is important in iron and steel works. A BP_LSSVM model, which combines back-propagation (BP) neural network and least squares support vector machine (LSSVM), and an improved mixed integer linear programming model were proposed to forecast the surplus gases and allocate them optimally. To maximize energy utilization, the stability of gas holders and boilers was considered and a concise heuristic procedure was proposed to assign penalties for boilers and gas holders. Moreover, the optimal level of gas holder was studied to enhance the stability of the gas system. Compared to the manual operation, the optimal results showed that the electricity generated by the power plant increased by 2.93% in normal condition and by 22.2% in overhaul condition. The proposed model minimizes the total cost by optimizing the boiler load with less adjustment frequency and the stability of gas holders and can be used as a guidance in dynamic forecasting and optimal scheduling of by-product gases in integrated iron and steel works.展开更多
An adaptive dwell scheduling algorithm for phased array radar(PAR)is proposed in this paper.The concept of online dynamic template is introduced,based on which a general pulse interleaving technique for PAR is put for...An adaptive dwell scheduling algorithm for phased array radar(PAR)is proposed in this paper.The concept of online dynamic template is introduced,based on which a general pulse interleaving technique for PAR is put forward.The pulse interleaving condition of the novel pulse interleaving is more intuitive and general.The traditional adaptive dwell scheduling algorithm combined with the general novel pulse interleaving technique results in the online adaptive dwell scheduling based on dynamic template for PAR is given.The proposed algorithm is suitable for radar tasks with multiple pulse repetition intervals(PRIs),which can be utilized in the actual radar system.For the purpose of further improving the scheduling efficiency,an efficient version is proposed.Simulation results demonstrate the effectiveness of the proposed algorithm and the efficient one.The proposed efficient algorithm can improve the time utilization ratio(TUR)by 9%,the hit value ratio(HVR)by 3.5%,and reduce the task drop ratio(TDR)by 6%in comparison with existing dwell scheduling algorithms considering pulse interleaving in PAR and the proposed efficient one.展开更多
The one-ladle technology requires an efficient ironmaking and steelmaking interface. The scheduling of the hot metal ladle in the steel plant determines the overall operational efficiency of the interface. Considering...The one-ladle technology requires an efficient ironmaking and steelmaking interface. The scheduling of the hot metal ladle in the steel plant determines the overall operational efficiency of the interface. Considering the strong uncertainties of real-world production environments, this work studies the dynamic scheduling problem of hot metal ladles and develops a data-driven three-layer approach to solve this problem. A dynamic scheduling optimization model of the hot metal ladle operation with a minimum average turnover time as the optimization objective is also constructed. Furthermore, the intelligent perception of industrial scenes and autonomous identification of disturbances, adaptive configuration of dynamic scheduling strategies, and real-time adjustment of schedules can be realized. The upper layer generates a demand-oriented prescheduling scheme for hot metal ladles. The middle layer adaptively adjusts this scheme to obtain an executable schedule according to the actual supply–demand relationship. In the lower layer, three types of dynamic scheduling strategies are designed according to the characteristics of the dynamic disturbance in the model:real-time flexible fine-tuning, local machine adjustment, and global rescheduling. Case test using 24 h production data on a certain day during the system operation of a steel plant shows that the method and system can effectively reduce the fluctuation and operation time of the hot metal ladle and improve the stability of the ironmaking and steelmaking interface production rhythm. The data-driven dynamic scheduling strategy is feasible and effective, and the proposed method can improve the operation efficiency of hot metal ladles.展开更多
Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower pri...Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.展开更多
A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; s...A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms.展开更多
A dynamic advanced planning and scheduling (DAPS) problem is addressed where new orders arrive on a continuous basis. A periodic policy with frozen interval is adopted to increase stability on the shop floor. A gene...A dynamic advanced planning and scheduling (DAPS) problem is addressed where new orders arrive on a continuous basis. A periodic policy with frozen interval is adopted to increase stability on the shop floor. A genetic algorithm is developed to find a schedule at each rescheduling point for both original orders and new orders that both production idle time and penalties on tardiness and earliness of orders are minimized. The proposed methodology is tested on a small example to illustrate the effect of the frozen interval. The results indicate that the suggested approach can improve the schedule stability while retaining efficiency.展开更多
It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling alg...It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling algorithm’s correctness and dependability.In a multi-processor system,task scheduling problem is represented by a combinatorial evaluation model,interactive Markov chain(IMC),and solution space of the algorithm with time and probability metrics is described by action-based continuous stochastic logic(aCSL).DMM derives a path by logging runtime scheduling actions and corresponding times.Through judging whether the derived path can be received by task scheduling IMC model,DMM analyses the correctness of algorithm.Through judging whether the actual values satisfy label function of the initial state,DMM analyses the dependability of algorithm.The simulation shows that DMM can effectively characterize the function behaviors and performance features of task scheduling algorithm.展开更多
基金the National Natural Science Foundation of China (No. 60004010) and the National High-Tech Research and Development (863) Program of China (No. 2001AA411020)
文摘Knowledge plays an active role in job-shop scheduling, especially in dynamic environments. A novel case-based immune framework was developed for static and dynamic job-shop problems, using the associative memory and knowledge reuse from case-based reasoning (CBR) and immune response mechanisms. A 2-level similarity index which combines both job routing and problem solution characteristics based on DNA matching ideas was defined for both the CBR and immune algorithms. A CBR-embedded immune algorithms (CBR-IAs) framework was then developed focusing on case retrieval and adaptation methods. In static environments, the CBR-IAs have excellent population diversity and fast convergence which are necessary for dynamic problems with jobs arriving and leaving continually. The results with dy-namic scheduling problems further confirm the CBR-IAs effectiveness as a problem solving method with knowledge reuse.
基金supported in part by the National Natural Science Foundation of China(61873106,62303109)Start-Up Research Fund of Southeast University(RF1028623002)Shenzhen Science and Technology Program(JCYJ20230807114609019)
文摘Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.
基金supported by the National Key Research and Development Program Project(No.2021YFB3301300).
文摘Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.
基金supported by the National Natural Science Foundation of China(6157328561305133)
文摘This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.
基金supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry under Grant No.2010-2011 and Chinese Post-doctoral Research Foundation
文摘One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.
基金This project is supported by National 973 Project of China (No.2002-CB312202) National Natural Science Foundation of China (No.60374005, No.60104004) Chinese Postdoctoral Fellowship Foundation.
文摘Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed.The relevant algorithm, pheromone-based dynamic real-time scheduling algorithm (PBDR), is given.MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out),SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules,i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior toFIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery,especially for on-time delivery performance.
基金supported in part by the National Natural Science Foundation of China(61473053)the Science and Technology Innovation Foundation of Dalian,China(2020JJ26GX033)。
文摘The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiting caused by automated guided vehicles(AGVs)delay in the uncertain environment can be alleviated by dynamic scheduling optimization.A dynamic scheduling process is introduced in this paper to solve the AGV scheduling and path planning problems,in which the scheduling scheme determines the starting and ending nodes of paths,and the choice of paths between nodes affects the scheduling of subsequent AGVs.This work proposes a two-stage mixed integer optimization model to minimize the transportation cost of AGVs under the constraint of laytime.A dynamic optimization algorithm,including the improved rule-based heuristic algorithm and the integration of the Dijkstra algorithm and the Q-Learning algorithm,is designed to solve the optimal AGV scheduling and path schemes.A new conflict avoidance strategy based on graph theory is also proposed to reduce the probability of path conflicts between AGVs.Numerical experiments are conducted to demonstrate the effectiveness of the proposed model and algorithm over existing methods.
基金supported by National Natural Science Foundation of China (Grant No. 70872076)Funding of Shanghai Municipal"Science Innovation Action Planning" of China (Grant No. 11dz1121803)
文摘Due to no effective rescheduling method in hull curved block construction planning, existing scheduling planning can’t be applied in practical production effectively. Two-dimensional layout and dynamic attributes of block construction planning are considered to develop a spatial rescheduling method, which is based on the spatial points searching rule and the particle swarm optimization(PSO) algorithm. A dynamic spatial rescheduling method is proposed to solve the manufacturing problem of rush-order blocks. Through spatial rescheduling, the rescheduling start time, the current processing information set and rescheduling blocks set can be obtained automatically. By using and updating the data of these sets, the rescheduling method combines the PSO algorithm with the spatial points searching rule to determine the rescheduling start time and layout of the blocks. Three types of dynamic events, including rush-order block delay, existing block delay and existing block position changes, are used to address problems with different function goals by setting different function weights. Finally, simulations based on three types of rush-order block events are performed to validate this method, including single rush-order block, multi rush-order blocks at the same time and multi rush-order blocks at different times. The simulation results demonstrate that this method can solve the rush-order block problems in hull block construction and reduce the interference to the existing manufacturing schedule. The proposed research provides a new rescheduling method and helps instruct scheduler to make production planning in hull block construction.
文摘In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power integrated systems. A dynamic solving method blended with particle swarm optimization algorithm is proposed. In this method, the solution space of the states of unit commitment is created and will be updated when the status of unit commitment changes in a period to meet the spinning reserve demand. The thermal unit operation constrains are inspected in adjacent time intervals to ensure all the states in the solution space effective. The particle swarm algorithm is applied in the procedure to optimize the load distribution of each unit commitment state. A case study in a simulation system is finally given to verify the feasibility and effectiveness of this dynamic optimization algorithm.
基金supported by the National Natural Science Foundation of China(51479158)the Fundamental Research Funds for the Central Universities(WUT:2018III061GX)
文摘Prior research on the resilience of critical infrastructure usually utilizes the network model to characterize the structure of the components so that a quantitative representation of resilience can be obtained. Particularly, network component importance is addressed to express its significance in shaping the resilience performance of the whole system. Due to the intrinsic complexity of the problem, some idealized assumptions are exerted on the resilience-optimization problem to find partial solutions. This paper seeks to exploit the dynamic aspect of system resilience, i.e., the scheduling problem of link recovery in the post-disruption phase.The aim is to analyze the recovery strategy of the system with more practical assumptions, especially inhomogeneous time cost among links. In view of this, the presented work translates the resilience-maximization recovery plan into the dynamic decisionmaking of runtime recovery option. A heuristic scheme is devised to treat the core problem of link selection in an ongoing style.Through Monte Carlo simulation, the link recovery order rendered by the proposed scheme demonstrates excellent resilience performance as well as accommodation with uncertainty caused by epistemic knowledge.
基金This project is supported by National Natural ScienceFoundation of China (No.70071017,59889505)
文摘A dynamic database based dynamic scheduling system is proposed.As the schedule is being preformed, the scheduling task data in the dynamic database is updated timely.Genetic algorithm (GA) is employed for generating optimised production plan quickly and easily in response to changes on the shop floor. The current status of the shop is considered while rescheduling, and new plan is used in conjunction with the existing schedule to improve the effeciency of flexble manufacturing systems. Simulation results demonstrate the effectiveness of the proposed system.
基金Project(2017YFB1301104)supported by the National Key Research and Development Program of ChinaProjects(61906212,61802426)supported by the National Natural Science Foundation of China。
文摘In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field(LGVF)approach for improving the precision of surveillance trajectory tracking.Then,in order to adopt to poor communication conditions,we propose a prediction-based synchronization method for keeping the formation consistently.Moreover,in order to adapt the multi-UAV system to dynamic and uncertain environment,this paper proposes a hierarchical dynamic task scheduling architecture.In this architecture,we firstly classify all the algorithms that perform tasks according to their functions,and then modularize the algorithms based on plugin technology.Afterwards,integrating the behavior model and plugin technique,this paper designs a three-layer control flow,which can efficiently achieve dynamic task scheduling.In order to verify the effectiveness of our architecture,we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels,respectively.
基金National Natural Science Foundation of China (No. 51874095)the National Key Research and Development Program (Project Nos. 2016YFB0601305 and 2016YFB0601301).
文摘The by-product gases, which are generated in ironmaking, coking and steel making processes, can be used as fuel for the metallurgical processes and on-site power plants. However, if the supply and demand of by-product gases are imbalanced, gas flaring may occur, leading to energy wastage and environmental pollution. Therefore, optimal scheduling of by-product gases is important in iron and steel works. A BP_LSSVM model, which combines back-propagation (BP) neural network and least squares support vector machine (LSSVM), and an improved mixed integer linear programming model were proposed to forecast the surplus gases and allocate them optimally. To maximize energy utilization, the stability of gas holders and boilers was considered and a concise heuristic procedure was proposed to assign penalties for boilers and gas holders. Moreover, the optimal level of gas holder was studied to enhance the stability of the gas system. Compared to the manual operation, the optimal results showed that the electricity generated by the power plant increased by 2.93% in normal condition and by 22.2% in overhaul condition. The proposed model minimizes the total cost by optimizing the boiler load with less adjustment frequency and the stability of gas holders and can be used as a guidance in dynamic forecasting and optimal scheduling of by-product gases in integrated iron and steel works.
基金This work was supported by the National Natural Science Froundation of China(61032010).
文摘An adaptive dwell scheduling algorithm for phased array radar(PAR)is proposed in this paper.The concept of online dynamic template is introduced,based on which a general pulse interleaving technique for PAR is put forward.The pulse interleaving condition of the novel pulse interleaving is more intuitive and general.The traditional adaptive dwell scheduling algorithm combined with the general novel pulse interleaving technique results in the online adaptive dwell scheduling based on dynamic template for PAR is given.The proposed algorithm is suitable for radar tasks with multiple pulse repetition intervals(PRIs),which can be utilized in the actual radar system.For the purpose of further improving the scheduling efficiency,an efficient version is proposed.Simulation results demonstrate the effectiveness of the proposed algorithm and the efficient one.The proposed efficient algorithm can improve the time utilization ratio(TUR)by 9%,the hit value ratio(HVR)by 3.5%,and reduce the task drop ratio(TDR)by 6%in comparison with existing dwell scheduling algorithms considering pulse interleaving in PAR and the proposed efficient one.
基金financially supported by the National Natural Science Foundation of China (No.51734004)the Key Program of the National Key R&D Program of China(No.2017YFB0304002)。
文摘The one-ladle technology requires an efficient ironmaking and steelmaking interface. The scheduling of the hot metal ladle in the steel plant determines the overall operational efficiency of the interface. Considering the strong uncertainties of real-world production environments, this work studies the dynamic scheduling problem of hot metal ladles and develops a data-driven three-layer approach to solve this problem. A dynamic scheduling optimization model of the hot metal ladle operation with a minimum average turnover time as the optimization objective is also constructed. Furthermore, the intelligent perception of industrial scenes and autonomous identification of disturbances, adaptive configuration of dynamic scheduling strategies, and real-time adjustment of schedules can be realized. The upper layer generates a demand-oriented prescheduling scheme for hot metal ladles. The middle layer adaptively adjusts this scheme to obtain an executable schedule according to the actual supply–demand relationship. In the lower layer, three types of dynamic scheduling strategies are designed according to the characteristics of the dynamic disturbance in the model:real-time flexible fine-tuning, local machine adjustment, and global rescheduling. Case test using 24 h production data on a certain day during the system operation of a steel plant shows that the method and system can effectively reduce the fluctuation and operation time of the hot metal ladle and improve the stability of the ironmaking and steelmaking interface production rhythm. The data-driven dynamic scheduling strategy is feasible and effective, and the proposed method can improve the operation efficiency of hot metal ladles.
基金supported by the National Natural Science Foundation of China (50421703)the National Key Laboratory of Electrical Engineering of Naval Engineering University
文摘Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.
文摘A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms.
基金This project is supported by the Hong Kong Polytechnic University,China(No,G-RGF9).
文摘A dynamic advanced planning and scheduling (DAPS) problem is addressed where new orders arrive on a continuous basis. A periodic policy with frozen interval is adopted to increase stability on the shop floor. A genetic algorithm is developed to find a schedule at each rescheduling point for both original orders and new orders that both production idle time and penalties on tardiness and earliness of orders are minimized. The proposed methodology is tested on a small example to illustrate the effect of the frozen interval. The results indicate that the suggested approach can improve the schedule stability while retaining efficiency.
基金the National Natural Science Foundation of China(Nos.11371003 and 11461006)the Special Fund for Scientific and Technological Bases and Talents of Guangxi(No.2016AD05050)+3 种基金the Special Fund for Bagui Scholars of Guangxithe Major Tendering Project of the National Social Science Foundation(No.17ZDA160)the Sichuan Science and Technology Project(No.19YYJC0038)the Fundamental Research Funds for the Central Universities,SWUN(No.2019NYB20)
文摘It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling algorithm’s correctness and dependability.In a multi-processor system,task scheduling problem is represented by a combinatorial evaluation model,interactive Markov chain(IMC),and solution space of the algorithm with time and probability metrics is described by action-based continuous stochastic logic(aCSL).DMM derives a path by logging runtime scheduling actions and corresponding times.Through judging whether the derived path can be received by task scheduling IMC model,DMM analyses the correctness of algorithm.Through judging whether the actual values satisfy label function of the initial state,DMM analyses the dependability of algorithm.The simulation shows that DMM can effectively characterize the function behaviors and performance features of task scheduling algorithm.