期刊文献+
共找到682篇文章
< 1 2 35 >
每页显示 20 50 100
A Knowledge Push Method of Complex Product Assembly Process Design Based on Distillation Model-Based Dynamically Enhanced Graph and Bayesian Network
1
作者 Fengque Pei Yaojie Lin +2 位作者 Jianhua Liu Cunbo Zhuang Sikuan Zhai 《Chinese Journal of Mechanical Engineering》 2025年第6期117-134,共18页
Under the paradigm of Industry 5.0,intelligent manufacturing transcends mere efficiency enhancement by emphasizing human-machine collaboration,where human expertise plays a central role in assembly processes.Despite a... Under the paradigm of Industry 5.0,intelligent manufacturing transcends mere efficiency enhancement by emphasizing human-machine collaboration,where human expertise plays a central role in assembly processes.Despite advancements in intelligent and digital technologies,assembly process design still heavily relies on manual knowledge reuse,and inefficiencies and inconsistent quality in process documentation are caused.To address the aforementioned issues,this paper proposes a knowledge push method of complex product assembly process design based on distillation model-based dynamically enhanced graph and Bayesian network.First,an initial knowledge graph is constructed using a BERT-BiLSTM-CRF model trained with integrated human expertise and a fine-tuned large language model.Then,a confidence-based dynamic weighted fusion strategy is employed to achieve dynamic incremental construction of the knowledge graph with low resource consumption.Subsequently,a Bayesian network model is constructed based on the relationships between assembly components,assembly features,and operations.Bayesian network reasoning is used to push assembly process knowledge under different design requirements.Finally,the feasibility of the Bayesian network construction method and the effectiveness of Bayesian network reasoning are verified through a specific example,significantly improving the utilization of assembly process knowledge and the efficiency of assembly process design. 展开更多
关键词 Complex product assembly process Large language model dynamic incremental construction of knowledge graph bayesian network Knowledge push
在线阅读 下载PDF
Analysis of rockburst mechanism and warning based on microseismic moment tensors and dynamic Bayesian networks 被引量:10
2
作者 Haoyu Mao Nuwen Xu +4 位作者 Xiang Li Biao Li Peiwei Xiao Yonghong Li Peng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2521-2538,共18页
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev... One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects. 展开更多
关键词 Microseismic monitoring Moment tensor dynamic bayesian network(dbn) Rockburst warning Shuangjiangkou hydropower station
在线阅读 下载PDF
Research on the self-defence electronic jamming decision-making based on the discrete dynamic Bayesian network 被引量:6
3
作者 Tang Zheng Gao Xiaoguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期702-708,共7页
The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with se... The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly. 展开更多
关键词 self-defense electronic jamming discrete dynamic bayesian network decision-making model
在线阅读 下载PDF
Reliability Modeling and Evaluation of Complex Multi-State System Based on Bayesian Networks Considering Fuzzy Dynamic of Faults 被引量:4
4
作者 Fangjun Zuo Meiwei Jia +2 位作者 Guang Wen Huijie Zhang Pingping Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期993-1012,共20页
In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditiona... In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods,this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness.The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function.Based on the solving characteristics of the dynamic fuzzy set and Bayesian network,the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of leaf nodes are solved.Finally,through the dynamic fuzzy reliability analysis of CNC machine tool hydraulic system balance circuit,the application of this method in system reliability evaluation is verified,which provides support for fault diagnosis of CNC machine tools. 展开更多
关键词 bayesian network(BN) dynamics FUZZY MULTI-STATE
在线阅读 下载PDF
Comparison of dynamic Bayesian network approaches for online diagnosis of aircraft system 被引量:2
5
作者 于劲松 冯威 +1 位作者 唐荻音 刘浩 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2926-2934,共9页
The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To a... The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To address this problem, two dynamic Bayesian network(DBN) approaches are proposed. One approach prunes the DBN of system, and then uses particle filter(PF) for this pruned DBN(PDBN) to perform online diagnosis. The problem is that estimates from a PF tend to have high variance for small sample sets. Using large sample sets is computationally expensive. The other approach compiles the PDBN into a dynamic arithmetic circuit(DAC) using an offline procedure that is applied only once, and then uses this circuit to provide online diagnosis recursively. This approach leads to the most computational consumption in the offline procedure. The experimental results show that the DAC, compared with the PF for PDBN, not only provides more reliable online diagnosis, but also offers much faster inference. 展开更多
关键词 online diagnosis dynamic bayesian network particle filter dynamic arithmetic circuit
在线阅读 下载PDF
A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study 被引量:4
6
作者 CAI Bao-ping ZHANG Yan-ping +5 位作者 YUAN Xiao-bing GAO Chun-tan LIU Yong-hong CHEN Guo-ming LIU Zeng-kai JI Ren-jie 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期597-607,共11页
Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metric... Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach. 展开更多
关键词 structure resilience structure system remaining useful life dynamic bayesian networks
在线阅读 下载PDF
Target threat estimation based on discrete dynamic Bayesian networks with small samples 被引量:4
7
作者 YE Fang MAO Ying +1 位作者 LI Yibing LIU Xinrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1135-1142,共8页
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr... The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications. 展开更多
关键词 discrete dynamic bayesian network(Ddbn) parameter learning missing data filling bayesian estimation
在线阅读 下载PDF
Prediction of visibility in the Arctic based on dynamic Bayesian network analysis 被引量:2
8
作者 Shijun Zhao Yulong Shan Ismail Gultepe 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第4期57-67,共11页
With the accelerated warming of the world,the safety and use of Arctic passages is receiving more attention.Predicting visibility in the Arctic has been a hot topic in recent years because of navigation risks and open... With the accelerated warming of the world,the safety and use of Arctic passages is receiving more attention.Predicting visibility in the Arctic has been a hot topic in recent years because of navigation risks and opening of ice-free northern passages.Numerical weather prediction and statistical prediction are two methods for predicting visibility.As microphysical parameterization schemes for visibility are so sophisticated,visibility prediction using numerical weather prediction models includes large uncertainties.With the development of artificial intelligence,statistical prediction methods have received increasing attention.In this study,we constructed a statistical model with a physical basis,to predict visibility in the Arctic based on a dynamic Bayesian network,and tested visibility prediction over a 1°×1°grid area averaged daily.The results show that the mean relative error of the predicted visibility from the dynamic Bayesian network is approximately 14.6%compared with the inferred visibility from the artificial neural network.However,dynamic Bayesian network can predict visibility for only 3 days.Moreover,with an increase in predicted area and period,the uncertainty of the predicted visibility becomes larger.At the same time,the accuracy of the predicted visibility is positively correlated with the time period of the input evidence data.It is concluded that using a dynamic Bayesian network to predict visibility can be useful over Arctic regions for projected climatic changes. 展开更多
关键词 ARCTIC visibility prediction artificial neural network dynamic bayesian network
在线阅读 下载PDF
Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input 被引量:2
9
作者 Long Chen Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1437-1445,共9页
Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian netwo... Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one. 展开更多
关键词 Industrial time series kernel dynamic bayesian networks(Kdbn) prediction intervals(PIs) variational inference
在线阅读 下载PDF
A reconfigurable dynamic Bayesian network for digital twin modeling of structures with multiple damage modes 被引量:1
10
作者 Yumei Ye Qiang Yang +3 位作者 Jingang Zhang Songhe Meng Jun Wang Xia Tang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第4期251-260,共10页
Dynamic Bayesian networks(DBNs)are commonly employed for structural digital twin modeling.At present,most researches only consider single damage mode tracking.It is not sufficient for a reusable spacecraft as various ... Dynamic Bayesian networks(DBNs)are commonly employed for structural digital twin modeling.At present,most researches only consider single damage mode tracking.It is not sufficient for a reusable spacecraft as various damage modes may occur during its service life.A reconfigurable DBN method is proposed in this paper.The structure of the DBN can be updated dynamically to describe the interactions between different damages.Two common damages(fatigue and bolt loosening)for a spacecraft structure are considered in a numerical example.The results show that the reconfigurable DBN can accurately predict the acceleration phenomenon of crack growth caused by bolt loosening while the DBN with time-invariant structure cannot,even with enough updates.The definition of interaction coefficients makes the reconfigurable DBN easy to track multiple damages and be extended to more complex problems.The method also has a good physical interpretability as the reconfiguration of DBN corresponds to a specific mechanism.Satisfactory predictions do not require precise knowledge of reconfiguration conditions,making the method more practical. 展开更多
关键词 dynamic bayesian network Reusable spacecraft DAMAGE RECONFIGURATION
在线阅读 下载PDF
Reliability analysis for wireless communication networks via dynamic Bayesian network
11
作者 YANG Shunqi ZENG Ying +2 位作者 LI Xiang LI Yanfeng HUANG Hongzhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1368-1374,共7页
The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works ... The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network. 展开更多
关键词 dynamic bayesian network(dbn) wireless commu-nication network continuous time bayesian network(CTBN) network reliability
在线阅读 下载PDF
Linking Structural Equation Modeling with Bayesian Network and Its Application to Coastal Phytoplankton Dynamics in the Bohai Bay
12
作者 XU Xiao-fu SUN Jian +2 位作者 NIE Hong-tao YUAN De-kui TAO Jian-hua 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期733-748,共16页
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e... Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay. 展开更多
关键词 structural equation modeling bayesian networks ecological modeling Bohai Bay phytoplankton dynamics
在线阅读 下载PDF
Dynamic Bayesian Network Based Prognosis in Machining Processes
13
作者 董明 杨志波 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第3期318-322,共5页
Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostic... Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostics. A dynamic Bayesian network (DBN) based prognosis method was investigated to predict the remaining useful life (RUL) for an equipment. First, a DBN based prognosis framework and specific steps for building a DBN based prognosis model were presented. Then, the corresponding inference algorithms for DBN based prognosis were provided. Finally, a prognosis procedure based on particle filtering algorithms was used to predict the RUL of drill-bits of a vertical drilling machine, which is commonly used in industrial process. Preliminary experimental results are promising. 展开更多
关键词 dynamic bayesian network dbn PROGNOSIS remaining useful life
在线阅读 下载PDF
Bayesian network structure learning by dynamic programming algorithm based on node block sequence constraints
14
作者 Chuchao He Ruohai Di +1 位作者 Bo Li Evgeny Neretin 《CAAI Transactions on Intelligence Technology》 2024年第6期1605-1622,共18页
The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study propose... The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks. 展开更多
关键词 bayesian network(BN) dynamic programming(DP) node block sequence strongly connected component(SCC) structure learning
在线阅读 下载PDF
基于DBN-GRA的非坠机民航客机火灾风险分析 被引量:1
15
作者 王霞 孟娟 张海军 《中国安全生产科学技术》 北大核心 2025年第4期202-210,共9页
为降低民航客机火灾事故率,以飞行全过程及3个关键飞行阶段作为维度,采用动态贝叶斯网络模型对非坠机民航客机火灾进行风险分析。根据火灾起火燃烧的当量比及事故演化的过程,基于事故致因模型确定事件因素,构建火灾风险分析模型;收集201... 为降低民航客机火灾事故率,以飞行全过程及3个关键飞行阶段作为维度,采用动态贝叶斯网络模型对非坠机民航客机火灾进行风险分析。根据火灾起火燃烧的当量比及事故演化的过程,基于事故致因模型确定事件因素,构建火灾风险分析模型;收集2014—2024年民航火灾事故数据,确定基本事件的先验概率,并应用BWM法计算中间事件的条件概率;运用灰色关联分析提取各维度关联因素结合动态时序变化构建动态贝叶斯网络,进行火灾风险分析,识别关键风险因素。研究结果表明:非坠机民航客机火灾初期发展阶段时物的因素与环境因素影响最高,充分燃烧阶段时组织管理因素和货物因素影响最高;飞行关键阶段中飞机机体自身因素和组织管理因素为高风险因素。研究结果可为提高非坠机民航客机火灾风险预警与应急管理能力提供决策参考。 展开更多
关键词 非坠机事件 民航客机火灾 动态贝叶斯网络 灰色关联分析 风险分析
在线阅读 下载PDF
融合N-K-DBN模型的船舶自沉事故风险因素动态耦合分析
16
作者 崔秀芳 曾杰熙 +1 位作者 邵志鹏 安楠楠 《安全与环境学报》 北大核心 2025年第6期2080-2091,共12页
我国海上事故频发,当多个风险因素动态耦合时易超系统阈值导致船舶自沉事故,造成人员伤亡、经济损失和环境危害。因此,有必要定量分析影响船舶自沉风险演化特征之间的动态耦合关系,以识别造成事故的关键因素。采用N-K模型和动态贝叶斯网... 我国海上事故频发,当多个风险因素动态耦合时易超系统阈值导致船舶自沉事故,造成人员伤亡、经济损失和环境危害。因此,有必要定量分析影响船舶自沉风险演化特征之间的动态耦合关系,以识别造成事故的关键因素。采用N-K模型和动态贝叶斯网络(Dynamic Bayesian Network, DBN)研究船舶自沉风险因素的动态耦合特性,通过文本挖掘技术分析中国海事局(CMSA)公布的146起船舶自沉事故报告,对风险因素进行分类并探究其耦合机制。首先,利用N-K模型量化各风险因素间的耦合度和关系;然后,利用贝叶斯网络(BN)模型在N-K模型基础上进一步量化和优化了耦合风险,减少其主观性;最后,在BN结构上加入时间序列建立N-K-DBN风险动态耦合模型,通过风险概率分析、敏感性分析、正向推理、反向诊断和不确定性分析等,确定影响动态风险关联性的关键因素及催化因素,实现对航行中耦合风险的动态控制,并提出风险管理策略和防范措施,以提升海上安全。结果表明:船舶自沉事故的发生与耦合值呈正相关,耦合因素越多风险值越高,耦合相互作用越强。事故初期,人为因素和管理因素是船舶自沉事件的关键致因,其交叉耦合时风险更为显著。随着时间推移,船舶因素对事故的影响逐渐提高,更易与人为因素发生交叉耦合导致动态风险增强,而恶劣气象是触发船舶与其他因素耦合的催化因素,易诱发多因素的交叉耦合风险,导致事故发生概率增大。通过研究识别出安全意识淡薄、公司管理不到位、船舶故障、船舶不适航、船舶管理不当和公司未履责等是引发自沉事故的关键动态风险耦合因素,以及恶劣气象这一重要的动态风险耦合催化因素,这些因素须受到高度重视并对它们采取相应防范措施。 展开更多
关键词 安全工程 船舶自沉事故 N-K模型 动态贝叶斯网络 风险动态耦合分析
原文传递
基于改进HFACS-DBN模型的建筑施工风险演化分析及应用研究
17
作者 李明海 马骁 +1 位作者 兰亚乐 何鑫 《工业安全与环保》 2025年第7期36-41,共6页
针对建筑施工领域中安全事故频发的问题,提出了一种基于动态贝叶斯网络(DBN)的安全风险分析与管控方法。首先,在人因分析分类系统(HFACS)的框架基础上,构建了适用于建筑施工的安全风险评价指标体系;然后,通过结合专家知识与数据驱动的方... 针对建筑施工领域中安全事故频发的问题,提出了一种基于动态贝叶斯网络(DBN)的安全风险分析与管控方法。首先,在人因分析分类系统(HFACS)的框架基础上,构建了适用于建筑施工的安全风险评价指标体系;然后,通过结合专家知识与数据驱动的方式,进一步建立了静态贝叶斯网络和DBN模型,从而实现了对建筑施工中安全风险的全面评估、预测以及动态演化分析。通过对关键致因链和敏感性节点的深入分析,研究制定了针对性的安全风险管控措施。案例研究表明,提出方法能够有效捕捉建筑施工安全风险的变化规律,指导实际安全管理实践,展现出良好的适用性和实用价值。研究成果为建筑施工安全管理提供了新的思路和方法,对促进建筑业安全生产具有重要的理论和实践意义。 展开更多
关键词 建筑施工 安全风险 动态贝叶斯网络 HFACS 管控措施
在线阅读 下载PDF
基于模糊DBN的生鲜冷链物流风险评估方法
18
作者 马颖 隽雯露 王诗颖 《交通信息与安全》 北大核心 2025年第4期160-167,180,共9页
针对生鲜冷链物流风险因素多、风险状态随时间变化等问题,为提升生鲜冷链物流风险动态评估效能,精准识别其关键风险诱因,基于模糊动态贝叶斯网络开展生鲜冷链物流风险评估方法研究。基于全流程-多维度融合视角,采用分解分析法解构生鲜... 针对生鲜冷链物流风险因素多、风险状态随时间变化等问题,为提升生鲜冷链物流风险动态评估效能,精准识别其关键风险诱因,基于模糊动态贝叶斯网络开展生鲜冷链物流风险评估方法研究。基于全流程-多维度融合视角,采用分解分析法解构生鲜冷链物流运作全流程,运用熵权-TOPSIS法深度筛选核心指标,构建了全流程多维度生鲜冷链物流风险评估指标体系。并结合模糊理论,纳入生鲜特性参数,以确定动态贝叶斯网络的条件概率分布,从而建立生鲜冷链物流的DBN风险评估模型。以武汉市某生鲜冷链物流企业为例开展实证分析,利用GeNIe软件建立DBN风险评估模型,对生鲜冷链物流的风险因素概率评估。结果表明:生鲜冷链物流风险的发生概率随着时间的转移从0.24增加到0.31;其中,运输环节呈现出最高的风险发生概率,构成生鲜冷链物流系统的关键风险变量,且随着时间流逝,存储环节因堆放方式不当、存储温度不适等原因,存储风险易转移至运输环节,导致运输风险增加约10%,对生鲜冷链物流风险影响最大。与BN相比,模糊DBN风险评估的精准性提高19.73%。 展开更多
关键词 供应链风险管理 生鲜冷链物流 风险评估 模糊动态贝叶斯网络
在线阅读 下载PDF
Reliability Analysis of Electrical System of Computer Numerical Control Machine Tool Based on Bayesian Networks 被引量:2
19
作者 黄土地 晏晶 +2 位作者 姜梅 彭卫文 黄洪钟 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第5期635-640,共6页
The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthe... The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability. 展开更多
关键词 dynamic fault tree(DFT) bayesian network(BN) RELIABILITY computer numerical control(CNC) machine tool electrical system
原文传递
基于DBN的苯塔泄漏致灾链与断链减灾研究
20
作者 杨曼 袁必和 陈先锋 《安全与环境工程》 北大核心 2025年第6期152-157,共6页
为解决化工园区内事故演化链路复杂的问题,提高事故链推理的准确性和断链减灾的有效性,以宁波科元精化股份有限公司“5·6”爆燃事故为例,构建了动态贝叶斯网络(dynamic Bayesian network,DBN)模型,并采用正向推理获取了灾害事件的... 为解决化工园区内事故演化链路复杂的问题,提高事故链推理的准确性和断链减灾的有效性,以宁波科元精化股份有限公司“5·6”爆燃事故为例,构建了动态贝叶斯网络(dynamic Bayesian network,DBN)模型,并采用正向推理获取了灾害事件的概率;基于该模型,从宏观与微观视角确定断链关键点,同时引入损失度和损失率的概念,绘制了关键节点断链减灾的损失率折线图;通过横向对比干预后各节点的损失情况,分析了不同干预模式下的减灾效果,并据此构建了综合减灾框架。结果表明:该模型为化工园区致灾链推理和应急方案的调整与优化提供了科学依据,可有效提升化工园区事故防范能力并实现高效减灾。 展开更多
关键词 化工园区 动态贝叶斯网络(dbn) 断链减灾 损失率 效果评估
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部