This study examines the efficacy of Avicennia marina(AM)leaves as an environmentally sustainable biosorbent for the extraction of methylene blue(MB)dye from wastewater.A hybrid approach of Response Surface Methodology...This study examines the efficacy of Avicennia marina(AM)leaves as an environmentally sustainable biosorbent for the extraction of methylene blue(MB)dye from wastewater.A hybrid approach of Response Surface Methodology(RSM)and Artificial Neural Networks(ANN)was implemented to assess,optimize,and forecast biosorption effectiveness across different operating parameters.The experimental design employed a Central Composite Design(CCD)methodology,focusing on critical parameters including pH,initial dye concentration,temperature,and biosorbent dosage.The ideal biosorption parameters were identified as a temperature of 44.3℃,pH 7.1,a biosorbent dosage of 0.3 grams,and an initial dye concentration of 48.4 mg/L,resulting in a maximum removal efficiency of 84.26%.The ANN model exhibited significant prediction accuracy,so confirming its appropriateness for predicting and enhancing intricate biosorption processes.The findings underscore that AM leaves constitute a cost-efficient,plentiful,and ecologically sustainable resource for wastewater treatment purposes.Furthermore,the amalgamation of RSM and ANN shown significant efficacy in process optimization and forecasting.These findings provide significant insights into the advancement of eco-friendly solutions for the treatment of dye-contaminated water.Subsequent study must prioritize the amplification of the procedure for industrial applications,the execution of ongoing system assessments,and the evaluation of the enduring environmental and economic ramifications of utilizing AM leaves as a biosorbent.展开更多
This essay focused on comparing and contrasts audio lingual method and Task-based language teaching method,demonstrating the strengths and weaknesses of the two methods and discusses how they impact upon both the teac...This essay focused on comparing and contrasts audio lingual method and Task-based language teaching method,demonstrating the strengths and weaknesses of the two methods and discusses how they impact upon both the teachers and the learners.TBLT is the contemporary teaching method with a great number of strong points.It seems that if there is more relatively scientific and effective method,TBLT should give way to it.The ultimate goal is to advocate the comparatively successful teaching method in the field of foreign language education.展开更多
This paper covers an experimental study on vocational students' participation in the class under task-based approach and traditional grammar-translation teaching method.As vocational colleges in China have develop...This paper covers an experimental study on vocational students' participation in the class under task-based approach and traditional grammar-translation teaching method.As vocational colleges in China have developed rapidly,teachers are still exploring and experimenting with different teaching approaches in order to find the suitable one(s).Using the theory of task-based approach,the grammartranslation method,the author conducts an experiment by recording.The following key issue has been addressed and some conclusive results have been made.The paper intends to find an answer to the following question:Under which teaching approach can students participate in the class more actively? Based on the above research work,the following result has been reached:Task-based approach can promote students' mastering of vocabulary and grammar,and students participate in the class more actively.The author would like to share her experiences with others in pedagogical studies of teaching vocational college students English.展开更多
The nucleotide (base) sequence of the genome might reflect biological information beyond the coding sequences. The appearance frequencies of successive base sequences (key sequences) were calculated for entire genomes...The nucleotide (base) sequence of the genome might reflect biological information beyond the coding sequences. The appearance frequencies of successive base sequences (key sequences) were calculated for entire genomes. Based on the appearance frequency of the key sequences of the genome, any DNA sequences on the genome could be expressed as a sequence spectrum with the adjoining base sequences, which could be used to study the corresponding biological phenomena. In this paper, we used 64 successive three- base sequences (triplets) as the key sequences, and determined and compared the spectra of specific genes to the chromosome, or specific genes to tRNA genes in Saccharomyces cerevisiae, Schizosaccharomyces pombe and Escherichia coli. Based on these analyses, a gene and its corresponding position on the chromosome showed highly similar spectra with the same fold enlargement (approximately 400-fold) in the S. cerevisiae, S. pombe and E. coli genomes. In addition, the homologous structure of genes that encode proteins was also observed with appropriate tRNA gene(s) in the genome. This analytical method might faithfully reflect the encoded biological information, that is, the conservation of the base sequences was to make sense the conservation of the translated amino acids sequence in the coding region, and might be universally applicable to other genomes, even those that consisted of multiple chromosomes.展开更多
In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments...In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments of Nino3 SST anomalies and Tahiti-Darwin SO index. The results show that the scheme is feasible and ENSO predictable.展开更多
Effective extraction of data association rules can provide a reliable basis for classification of stellar spectra. The concept of stellar spectrum weighted itemsets and stellar spectrum weighted association rules are ...Effective extraction of data association rules can provide a reliable basis for classification of stellar spectra. The concept of stellar spectrum weighted itemsets and stellar spectrum weighted association rules are introduced, and the weight of a single property in the stellar spectrum is determined by information entropy. On that basis, a method is presented to mine the association rules of a stellar spectrum based on the weighted frequent pattern tree. Important properties of the spectral line are highlighted using this method. At the same time, the waveform of the whole spectrum is taken into account. The experimental results show that the data association rules of a stellar spectrum mined with this method are consistent with the main features of stellar spectral types.展开更多
This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the...This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested.展开更多
The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface te...The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.展开更多
Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the s...Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the system works,the SEM measuring system is equivalent to an integral image acquisition system.Firstly,a lattice measuring method is researched based on integral imaging theory.Secondly,the system parameters are calibrated by the VLSI lattice standard.Finally,the value of the lattice standard to be tested is determined based on the calibration parameters and the lattice measuring algorithm.The experimental results show that,compared with the traditional electron microscope measurement method,the relative error of the measured value of the algorithm is maintained within 0.2%,with the same level of measurement accuracy,but it expands the field of view of the electron microscope measurement system,which is suitable for the measurement of samples under high magnification.展开更多
In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element...In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM.展开更多
Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing e...Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing efficiency and simplified programming. Both the dual convex programming method and perimeter constraint scheme are used to optimize the 2D and 3D microstructures. Numerical results indicate that the strain energy-based method has the same effectiveness as that of homogenization method for orthotropic materials.展开更多
Oxygenated volatile organic compounds(OVOCs) are key intermediates in the atmospheric photooxidation process. To further study the primary and secondary sources of OVOCs,their ambient levels were monitored using a pro...Oxygenated volatile organic compounds(OVOCs) are key intermediates in the atmospheric photooxidation process. To further study the primary and secondary sources of OVOCs,their ambient levels were monitored using a proton-transfer reaction mass spectrometer(PTR-MS) at an urban site in the Pearl River Delta of China. Continuous monitoring campaigns were conducted in the spring, summer, fall, and winter of 2016. Among the six types of OVOC species, the mean concentrations of methanol were the highest in each season(up to 13–20 ppbv), followed by those of acetone, acetaldehyde and acetic acid(approximately 2–4 ppbv), while those of formic acid and methyl ethyl ketone(MEK) were the lowest(approximately 1–2 ppbv). As observed from a diurnal variation chart, the OVOCs observed in Shenzhen may have been affected by numerous factors such as their primary and secondary sources and photochemical consumption. The photochemical age-based parameterization method was used to apportion the sources of ambient OVOCs. Methanol had significant anthropogenic primary sources but negligible anthropogenic secondary sources during all of the seasons. Acetone, MEK and acetic acid were mostly attributed to anthropogenic primary sources during each season with smaller contributions from anthropogenic secondary sources. Acetaldehyde had similar contributions from both anthropogenic secondary and anthropogenic primary sources throughout the year.Meanwhile, anthropogenic primary sources contributed the most to formic acid.展开更多
An imaging accuracy improving method is established, within which a distance coefficient including location information between sparse array configuration and the location of defect is proposed to select higher signal...An imaging accuracy improving method is established, within which a distance coefficient including location information between sparse array configuration and the location of defect is proposed to select higher signal- to-noise ratio data from all experimental data and then to use these selected data for elliptical imaging. Tile relationships among imaging accuracy, distance coefficient and residual direct wave are investigated, and then the residual direct wave is introduced to make the engineering application more convenient. The effectiveness of the proposed method is evaluated experimentally by sparse transducer array of a rectangle, and the results reveal that selecting experimental data of smaller distance coefficient can effectively improve imaging accuracy. Moreover, the direct wave difference increases with the decrease of the distance coefficient, which implies that the imaging accuracy can be effectively improved by using the experimental data of the larger direct wave difference.展开更多
In this work, we further extended the face-based smoothed finite element method (FS-FEM) for modal analysis of three-dimensional solids using four-node tetrahedron elements. The FS-FEM is formulated based on the smo...In this work, we further extended the face-based smoothed finite element method (FS-FEM) for modal analysis of three-dimensional solids using four-node tetrahedron elements. The FS-FEM is formulated based on the smoothed Calerkin weak form which employs smoothed strains obtained using the gradient smoothing operation on face-based smoothing domains. This strain smoothing operation can provide softening effect to the system stiffness and make the FSFEM provide more accurate eigenfrequency prediction than the FEM does. Numerical studies have verified this attractive property of FS-FEM as well as its ability and effectiveness on providing reliable eigenfrequency and eigenmode prediction in practical engineering application.展开更多
Target-based and phenotype-based methods are the two main approaches for drug screening.Target-based drug screening focuses on specific targets CPA highly correlated with disease mechanisms,by detecting protein-ligand...Target-based and phenotype-based methods are the two main approaches for drug screening.Target-based drug screening focuses on specific targets CPA highly correlated with disease mechanisms,by detecting protein-ligand binding structure,dynamics and affinity.Currently,the four mainstream drug targets are G protein-coupled receptors(GPCRs),kinases,ion channels,and nuclear receptors,accounting for over 70%of effective drug targets,most of which are membrane proteins and enzymes.In recent years,various new drug targets have been continuously discovered,and the research focus has shifted from simple affinity analysis to high-throughput and high-content screening,as well as exploring drug-target interaction modes.These deepen reliance on the analytical techniques to have higher sensitivity,recognition specificity,and applicability to diversified target structures,which promoting the rapid development of novel screening methods.展开更多
Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distribu...Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.展开更多
Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for c...Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for complicated optimization problems with a large design space, many design variables, and strong nonlinearity, SBO converges slowly and shows imperfection in local exploitation. This paper proposes a trust region method within the framework of an SBO process based on the Kriging model. In each refinement cycle, new samples are selected by a certain design of experiment method within a variable design space, which is sequentially updated by the trust region method. A multi-dimensional trust-region radius is proposed to improve the adaptability of the developed methodology. Further, the scale factor and the limit factor of the trust region are studied to evaluate their effects on the optimization process. Thereafter, different SBO methods using error-based exploration, prediction-based exploitation, refinement based on the expected improvement function, a hybrid refinement strategy, and the developed trust-regionbased refinement are utilized in four analytical tests. Further, the developed optimization methodology is employed in the drag minimization of an RAE2822 airfoil. Results indicate that it has better robustness and local exploitation capability in comparison with those of other SBO展开更多
COMPUTATIONAL experiments method is an essential tool for analyzing,designing,managing,and integrating complex systems.However,a significant challenge arises in constructing agents with human-like characteristics to f...COMPUTATIONAL experiments method is an essential tool for analyzing,designing,managing,and integrating complex systems.However,a significant challenge arises in constructing agents with human-like characteristics to form an AI society.Agent modeling typically encompasses four levels:1)The autonomy features of agents,e.g.,perception,behavior,and decision-making;2)The evolutionary features of agents,e.g.,bounded rationality,heterogeneity,and learning evolution;3)The social features of agents,e.g.,interaction,cooperation,and competition;4)The emergent features of agents,e.g.,gaming with environments or regulatory strategies.Traditional modeling techniques primarily derive from ABMs(Agent-based Models)and incorporate various emerging technologies(e.g.,machine learning,big data,and social networks),which can enhance modeling capabilities,while amplifying the complexity[1].展开更多
The current life-prediction models for lithium-ion batteries have several problems, such as the construction of complex feature structures, a high number of feature dimensions, and inaccurate prediction results. To ov...The current life-prediction models for lithium-ion batteries have several problems, such as the construction of complex feature structures, a high number of feature dimensions, and inaccurate prediction results. To overcome these problems, this paper proposes a deep-learning model combining an autoencoder network and a long short-term memory network. First, this model applies the characteristics of the autoencoder to reduce the dimensionality of the high-dimensional features extracted from the battery data set and realize the fusion of complex time-domain features, which overcomes the problems of redundant model information and low computational efficiency. This model then uses a long short-term memory network that is sensitive to time-series data to solve the long-path dependence problem in the prediction of battery life. Lastly, the attention mechanism is used to give greater weight to features that have a greater impact on the target value, which enhances the learning effect of the model on the long input sequence. To verify the efficacy of the proposed model, this paper uses NASA's lithium-ion battery cycle life data set.展开更多
An inverse analysis is presented to estimate line heat source in two-dimensional steady-state and transient heat transfer problems.A constant heat source is considered in the steady-state heat transfer problem(a param...An inverse analysis is presented to estimate line heat source in two-dimensional steady-state and transient heat transfer problems.A constant heat source is considered in the steady-state heat transfer problem(a parameter estimation problem)and a time-varying heat source is considered in the transient heat transfer problem(a function estimation problem).Since a general irregular 2D heat conducting body is considered,a body-fitted grid generation is used to mesh the domain.Then governing equations and associated boundary and initial conditions are transformed from the physical domain to the computational domain and finite difference method is used to solve the governing equations to obtain the temperature distribution in the body.Using an efficient,accurate,and very easy to implement sensitivity analysis incorporated in a gradient based minimization method(here,steepest descentmethod),the unknown heat source is estimated accurately.In the function estimation part,it is assumed that there is no prior information on the functional form of the heat source and the estimation process can be performed with a reasonable initial guess for the heat source.The main advantage of the proposed inverse analysis is that the sensitivity matrix(and hence,the objective function gradient with respect to the unknown variables)can be computed during the direct heat transfer solution through newyet simple explicit expressions with no need to solve extra equations such as the sensitivity and adjoint problems and impose additional computational costs comparable to the direct problem solution ones.Some test cases are presented to investigate the accuracy,efficiency,and effect of measurement error on the estimated parameter and function for the line heat source.展开更多
文摘This study examines the efficacy of Avicennia marina(AM)leaves as an environmentally sustainable biosorbent for the extraction of methylene blue(MB)dye from wastewater.A hybrid approach of Response Surface Methodology(RSM)and Artificial Neural Networks(ANN)was implemented to assess,optimize,and forecast biosorption effectiveness across different operating parameters.The experimental design employed a Central Composite Design(CCD)methodology,focusing on critical parameters including pH,initial dye concentration,temperature,and biosorbent dosage.The ideal biosorption parameters were identified as a temperature of 44.3℃,pH 7.1,a biosorbent dosage of 0.3 grams,and an initial dye concentration of 48.4 mg/L,resulting in a maximum removal efficiency of 84.26%.The ANN model exhibited significant prediction accuracy,so confirming its appropriateness for predicting and enhancing intricate biosorption processes.The findings underscore that AM leaves constitute a cost-efficient,plentiful,and ecologically sustainable resource for wastewater treatment purposes.Furthermore,the amalgamation of RSM and ANN shown significant efficacy in process optimization and forecasting.These findings provide significant insights into the advancement of eco-friendly solutions for the treatment of dye-contaminated water.Subsequent study must prioritize the amplification of the procedure for industrial applications,the execution of ongoing system assessments,and the evaluation of the enduring environmental and economic ramifications of utilizing AM leaves as a biosorbent.
文摘This essay focused on comparing and contrasts audio lingual method and Task-based language teaching method,demonstrating the strengths and weaknesses of the two methods and discusses how they impact upon both the teachers and the learners.TBLT is the contemporary teaching method with a great number of strong points.It seems that if there is more relatively scientific and effective method,TBLT should give way to it.The ultimate goal is to advocate the comparatively successful teaching method in the field of foreign language education.
文摘This paper covers an experimental study on vocational students' participation in the class under task-based approach and traditional grammar-translation teaching method.As vocational colleges in China have developed rapidly,teachers are still exploring and experimenting with different teaching approaches in order to find the suitable one(s).Using the theory of task-based approach,the grammartranslation method,the author conducts an experiment by recording.The following key issue has been addressed and some conclusive results have been made.The paper intends to find an answer to the following question:Under which teaching approach can students participate in the class more actively? Based on the above research work,the following result has been reached:Task-based approach can promote students' mastering of vocabulary and grammar,and students participate in the class more actively.The author would like to share her experiences with others in pedagogical studies of teaching vocational college students English.
文摘The nucleotide (base) sequence of the genome might reflect biological information beyond the coding sequences. The appearance frequencies of successive base sequences (key sequences) were calculated for entire genomes. Based on the appearance frequency of the key sequences of the genome, any DNA sequences on the genome could be expressed as a sequence spectrum with the adjoining base sequences, which could be used to study the corresponding biological phenomena. In this paper, we used 64 successive three- base sequences (triplets) as the key sequences, and determined and compared the spectra of specific genes to the chromosome, or specific genes to tRNA genes in Saccharomyces cerevisiae, Schizosaccharomyces pombe and Escherichia coli. Based on these analyses, a gene and its corresponding position on the chromosome showed highly similar spectra with the same fold enlargement (approximately 400-fold) in the S. cerevisiae, S. pombe and E. coli genomes. In addition, the homologous structure of genes that encode proteins was also observed with appropriate tRNA gene(s) in the genome. This analytical method might faithfully reflect the encoded biological information, that is, the conservation of the base sequences was to make sense the conservation of the translated amino acids sequence in the coding region, and might be universally applicable to other genomes, even those that consisted of multiple chromosomes.
文摘In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments of Nino3 SST anomalies and Tahiti-Darwin SO index. The results show that the scheme is feasible and ENSO predictable.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61073145, 41140027 and 41210104028)the Shanxi Province Natural Science Foundation (No. 2012011011-4)+1 种基金Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (No. 20121011)the Shanxi Province Science Foundation for Youths (No. 2012021015-4)
文摘Effective extraction of data association rules can provide a reliable basis for classification of stellar spectra. The concept of stellar spectrum weighted itemsets and stellar spectrum weighted association rules are introduced, and the weight of a single property in the stellar spectrum is determined by information entropy. On that basis, a method is presented to mine the association rules of a stellar spectrum based on the weighted frequent pattern tree. Important properties of the spectral line are highlighted using this method. At the same time, the waveform of the whole spectrum is taken into account. The experimental results show that the data association rules of a stellar spectrum mined with this method are consistent with the main features of stellar spectral types.
基金Project (No. 50578099) supported by the National Natural ScienceFoundation of China
文摘This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested.
基金the National Natural Science Foundation of China(No.31101085)the Scientific Research and Development Foundation for Start-up Projects of Zhejiang Agriculture and Forestry University (No.2034020044)
文摘The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.
基金supported by the National Key Research and Development Program(No.2019YFB2005503)。
文摘Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the system works,the SEM measuring system is equivalent to an integral image acquisition system.Firstly,a lattice measuring method is researched based on integral imaging theory.Secondly,the system parameters are calibrated by the VLSI lattice standard.Finally,the value of the lattice standard to be tested is determined based on the calibration parameters and the lattice measuring algorithm.The experimental results show that,compared with the traditional electron microscope measurement method,the relative error of the measured value of the algorithm is maintained within 0.2%,with the same level of measurement accuracy,but it expands the field of view of the electron microscope measurement system,which is suitable for the measurement of samples under high magnification.
文摘In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM.
基金National Natural Science Foundation of China (90405016, 10676028) 973 Program (2006CB601205)+1 种基金 863 Project (2006AA04Z 122) Aeronautical Science Foundation (04B53080, 2006ZA 53006) and 111 Project (B07050)
文摘Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing efficiency and simplified programming. Both the dual convex programming method and perimeter constraint scheme are used to optimize the 2D and 3D microstructures. Numerical results indicate that the strain energy-based method has the same effectiveness as that of homogenization method for orthotropic materials.
基金supported by the Ministry of Science and Technology of China (Nos.2017YFC0210004,2014BAC21B01)the Science and Technology Plan of Shenzhen Municipality (Nos.JCYJ20170412150626172,JCYJ20160122105855253)
文摘Oxygenated volatile organic compounds(OVOCs) are key intermediates in the atmospheric photooxidation process. To further study the primary and secondary sources of OVOCs,their ambient levels were monitored using a proton-transfer reaction mass spectrometer(PTR-MS) at an urban site in the Pearl River Delta of China. Continuous monitoring campaigns were conducted in the spring, summer, fall, and winter of 2016. Among the six types of OVOC species, the mean concentrations of methanol were the highest in each season(up to 13–20 ppbv), followed by those of acetone, acetaldehyde and acetic acid(approximately 2–4 ppbv), while those of formic acid and methyl ethyl ketone(MEK) were the lowest(approximately 1–2 ppbv). As observed from a diurnal variation chart, the OVOCs observed in Shenzhen may have been affected by numerous factors such as their primary and secondary sources and photochemical consumption. The photochemical age-based parameterization method was used to apportion the sources of ambient OVOCs. Methanol had significant anthropogenic primary sources but negligible anthropogenic secondary sources during all of the seasons. Acetone, MEK and acetic acid were mostly attributed to anthropogenic primary sources during each season with smaller contributions from anthropogenic secondary sources. Acetaldehyde had similar contributions from both anthropogenic secondary and anthropogenic primary sources throughout the year.Meanwhile, anthropogenic primary sources contributed the most to formic acid.
文摘An imaging accuracy improving method is established, within which a distance coefficient including location information between sparse array configuration and the location of defect is proposed to select higher signal- to-noise ratio data from all experimental data and then to use these selected data for elliptical imaging. Tile relationships among imaging accuracy, distance coefficient and residual direct wave are investigated, and then the residual direct wave is introduced to make the engineering application more convenient. The effectiveness of the proposed method is evaluated experimentally by sparse transducer array of a rectangle, and the results reveal that selecting experimental data of smaller distance coefficient can effectively improve imaging accuracy. Moreover, the direct wave difference increases with the decrease of the distance coefficient, which implies that the imaging accuracy can be effectively improved by using the experimental data of the larger direct wave difference.
基金Project supported by the National Project 973 (No. 2010CB328005)the National Natural Science Foundation of China (No. 11202074)+2 种基金partially supported by the Open Research Fund Program of the State Key Laboratory of Advanced Technology of Design and Manufacturing for Vehicle Body, Hunan University, P. R. China (No. 31175002)the support of Centre for ACES, Singapore-MIT Alliance (SMA)National University of Singapore for the work
文摘In this work, we further extended the face-based smoothed finite element method (FS-FEM) for modal analysis of three-dimensional solids using four-node tetrahedron elements. The FS-FEM is formulated based on the smoothed Calerkin weak form which employs smoothed strains obtained using the gradient smoothing operation on face-based smoothing domains. This strain smoothing operation can provide softening effect to the system stiffness and make the FSFEM provide more accurate eigenfrequency prediction than the FEM does. Numerical studies have verified this attractive property of FS-FEM as well as its ability and effectiveness on providing reliable eigenfrequency and eigenmode prediction in practical engineering application.
文摘Target-based and phenotype-based methods are the two main approaches for drug screening.Target-based drug screening focuses on specific targets CPA highly correlated with disease mechanisms,by detecting protein-ligand binding structure,dynamics and affinity.Currently,the four mainstream drug targets are G protein-coupled receptors(GPCRs),kinases,ion channels,and nuclear receptors,accounting for over 70%of effective drug targets,most of which are membrane proteins and enzymes.In recent years,various new drug targets have been continuously discovered,and the research focus has shifted from simple affinity analysis to high-throughput and high-content screening,as well as exploring drug-target interaction modes.These deepen reliance on the analytical techniques to have higher sensitivity,recognition specificity,and applicability to diversified target structures,which promoting the rapid development of novel screening methods.
文摘Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.
基金co-supported by the National Natural Science Foundation of China (No. 11502209)the Free Research Projects of the Central University Funding of China (No. 3102015ZY007)
文摘Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for complicated optimization problems with a large design space, many design variables, and strong nonlinearity, SBO converges slowly and shows imperfection in local exploitation. This paper proposes a trust region method within the framework of an SBO process based on the Kriging model. In each refinement cycle, new samples are selected by a certain design of experiment method within a variable design space, which is sequentially updated by the trust region method. A multi-dimensional trust-region radius is proposed to improve the adaptability of the developed methodology. Further, the scale factor and the limit factor of the trust region are studied to evaluate their effects on the optimization process. Thereafter, different SBO methods using error-based exploration, prediction-based exploitation, refinement based on the expected improvement function, a hybrid refinement strategy, and the developed trust-regionbased refinement are utilized in four analytical tests. Further, the developed optimization methodology is employed in the drag minimization of an RAE2822 airfoil. Results indicate that it has better robustness and local exploitation capability in comparison with those of other SBO
基金supported in part by National Key Research and Development Program of China(2021YFF0900800)National Natural Science Foundation of China(62472306,62441221,62206116)+2 种基金Tianjin University’s 2024 Special Project on Disciplinary Development(XKJS-2024-5-9)Tianjin University Talent Innovation Reward Program for Literature&Science Graduate Student(C1-2022-010)Shanxi Province Social Science Foundation(2020F002).
文摘COMPUTATIONAL experiments method is an essential tool for analyzing,designing,managing,and integrating complex systems.However,a significant challenge arises in constructing agents with human-like characteristics to form an AI society.Agent modeling typically encompasses four levels:1)The autonomy features of agents,e.g.,perception,behavior,and decision-making;2)The evolutionary features of agents,e.g.,bounded rationality,heterogeneity,and learning evolution;3)The social features of agents,e.g.,interaction,cooperation,and competition;4)The emergent features of agents,e.g.,gaming with environments or regulatory strategies.Traditional modeling techniques primarily derive from ABMs(Agent-based Models)and incorporate various emerging technologies(e.g.,machine learning,big data,and social networks),which can enhance modeling capabilities,while amplifying the complexity[1].
基金supported by the National Natural Science Foundation of China (No.61871350)the Zhejiang Science and Technology Plan Project (No.2019C011123)the Zhejiang Province Basic Public Welfare Research Project (No.LGG19F030011)。
文摘The current life-prediction models for lithium-ion batteries have several problems, such as the construction of complex feature structures, a high number of feature dimensions, and inaccurate prediction results. To overcome these problems, this paper proposes a deep-learning model combining an autoencoder network and a long short-term memory network. First, this model applies the characteristics of the autoencoder to reduce the dimensionality of the high-dimensional features extracted from the battery data set and realize the fusion of complex time-domain features, which overcomes the problems of redundant model information and low computational efficiency. This model then uses a long short-term memory network that is sensitive to time-series data to solve the long-path dependence problem in the prediction of battery life. Lastly, the attention mechanism is used to give greater weight to features that have a greater impact on the target value, which enhances the learning effect of the model on the long input sequence. To verify the efficacy of the proposed model, this paper uses NASA's lithium-ion battery cycle life data set.
文摘An inverse analysis is presented to estimate line heat source in two-dimensional steady-state and transient heat transfer problems.A constant heat source is considered in the steady-state heat transfer problem(a parameter estimation problem)and a time-varying heat source is considered in the transient heat transfer problem(a function estimation problem).Since a general irregular 2D heat conducting body is considered,a body-fitted grid generation is used to mesh the domain.Then governing equations and associated boundary and initial conditions are transformed from the physical domain to the computational domain and finite difference method is used to solve the governing equations to obtain the temperature distribution in the body.Using an efficient,accurate,and very easy to implement sensitivity analysis incorporated in a gradient based minimization method(here,steepest descentmethod),the unknown heat source is estimated accurately.In the function estimation part,it is assumed that there is no prior information on the functional form of the heat source and the estimation process can be performed with a reasonable initial guess for the heat source.The main advantage of the proposed inverse analysis is that the sensitivity matrix(and hence,the objective function gradient with respect to the unknown variables)can be computed during the direct heat transfer solution through newyet simple explicit expressions with no need to solve extra equations such as the sensitivity and adjoint problems and impose additional computational costs comparable to the direct problem solution ones.Some test cases are presented to investigate the accuracy,efficiency,and effect of measurement error on the estimated parameter and function for the line heat source.