A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when...A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when the order of the duplexer is too high,so it is not easy to fall into the local solution.In order to solve this problem,a new optimization strategy is proposed in this paper,that is,two-channel filters are optimized separately,which can reduce the number of optimization variables and greatly reduce the probability of results falling into local solutions.The optimization method combines the self-adaptive differential evolution algorithm(SADE)with the Levenberg-Marquardt(LM)algorithm to get a global solution more easily and accelerate the optimization speed.To verify its practical value,we design a 5 G duplexer based on the proposed method.The duplexer has a large external coupling,and how to achieve a feed structure with a large coupling bandwidth at the source is also discussed.The experimental results show that the proposed optimization method can realize the synthesis of higher-order duplexers compared with the traditional methods.展开更多
The full-duplex(FD) based wireless communication devices,which are capable of concurrently transmitting and receiving signals with a single frequency band,suffer from a severe self-interference(SI) due to the large po...The full-duplex(FD) based wireless communication devices,which are capable of concurrently transmitting and receiving signals with a single frequency band,suffer from a severe self-interference(SI) due to the large power difference between the devices' own transmission and the useful signal comes from the remote transmitters. To enable the practical FD devices to be implementable,the SI power must be sufficiently suppressed to the level of background noise power,making the received signal-to-interference-plus-noise ratio(SINR) satisfy the decoding requirement. In this paper,the design and implementation of the duplexer for facilitating SI cancellation in FD based wireless communications are investigated,with a new type of duplexer(i.e. an improved directional coupler) designed for improving the spatial suppression of the SI power. Furthermore,the practical circuit boards are designed and verified for the proposed prototype,showing that the spatial suppression capability may be up to 36 d B(i.e. much higher than that attainable in the commonly designed ferrite circulator) by using the proposed design.展开更多
The trade-offbetween strength and ductility remains a persistent obstacle in the development of advanced structural materials.In the present study,a novel dual-heterogeneous structure with a bimodal grain distribution...The trade-offbetween strength and ductility remains a persistent obstacle in the development of advanced structural materials.In the present study,a novel dual-heterogeneous structure with a bimodal grain distribution in both ferrite and austenite phases was fabricated via cold rolling and partial recrystallization annealing on solution-treated 2205 duplex stainless steel(DSS).The processed steel exhibited superior mechanical properties,with the yield strength increasing from 586 MPa to 903 MPa,and the ultimate tensile strength from 796 MPa to 1082 MPa,while maintaining a high total elongation of 35.3%.Based on in-situ electron backscatter diffraction(EBSD)and scanning electron microscope(SEM)analyses,the microstructural deformation behavior and strengthening mechanisms of the dual-heterostructured 2205 DSS were elucidated.The outstanding combination of strength and ductility was ascribed to the synergistic effects of grain refinement,dislocation strengthening,and hetero-deformation induced(HDI)strengthening.Moreover,the high ductility in DSS was attributed to the coactivation of cross-slip systems in ferrite{110}and{112}along with the single-slip systems in austenite{111}.These findings provide a new strategy for the design and development of high-strength and ultra-high-strength DSSs.展开更多
The microstructures and corrosion behavior of 1.0wt%Gd-containing neutron-absorbing duplex stainless steel annealed at different temperatures were studied.Results reveal that the content of Gd-containing secondary pha...The microstructures and corrosion behavior of 1.0wt%Gd-containing neutron-absorbing duplex stainless steel annealed at different temperatures were studied.Results reveal that the content of Gd-containing secondary phase increases with increasing the annealing temperatures to 1080℃,and then decreases.In the sample annealed at 1080℃,M-Gd(M=Fe,Cr,Ni)intermetallic with M_(3)Gd as the core phase and M_(12)Gd as the shell is the primary secondary phase.In the sample annealed at 1140℃,M_(3)Gd phase is dominant.The corrosion behavior of the two annealed steel samples were analyzed in NaCl,HCl and H_(3)BO_(3) solutions.It is found that the sample annealed at 1140℃ has lower corrosion rate.M_(3)Gd is more electrochemically active than M_(12)Gd when the sample is immersed in NaCl and HCl solutions,but more noble in H_(3)BO_(3) solution.展开更多
Super duplex stainless steels(SDSSs)and hyper duplex stainless steels(HDSSs),with more alloying elements content,are more corrosion resistant than the standard grades.Progresses of research works on weldability of SDS...Super duplex stainless steels(SDSSs)and hyper duplex stainless steels(HDSSs),with more alloying elements content,are more corrosion resistant than the standard grades.Progresses of research works on weldability of SDSSs and HDSSs in recent years are reviewed in this paper.If proper heat input is provided,SDSSs and HDSSs can be welded with most fusion welding processes,while tungsten inert gas welding is the most popular process.SDSSs and HDSSs are more prone to secondary phases precipitation than the standard and lean grades,and heat input for SDSSs and HDSSs welding is restricted to a smaller range.Matching filler materials are usually recommended for SDSSs and HDSSs welding,rather than Ni-riched ones for standard and lean grades.Nitrogen addition in shielding gas is always beneficial.Post weld heat treatment with slow cooling rate will be harmful.Hot cracking tendency of SDSSs and HDSSs joints is not high,but sometimes they can suffer from hydrogen induced stress cracking.展开更多
The precipitation behavior,corrosion,and passivation performance of solutionized and severely sensitized SAF 2507 super-duplex stainless steel subjected to a temperature of 900℃for 10 h are investigated in a twofold ...The precipitation behavior,corrosion,and passivation performance of solutionized and severely sensitized SAF 2507 super-duplex stainless steel subjected to a temperature of 900℃for 10 h are investigated in a twofold concentrated seawater at 60℃.The sensitized alloy exhibits 66.1%γphases and 33.9%σphases,and the originalαphases have completely decomposed through eutectoid transformation,resulting in a microstructure characterized by coarse blockyσ/γ2 aggregates.High defect densities and an increased amount of oxyhydroxides and hydroxides are present in the passive film on the sensitized alloy,thereby enhancing n-type semiconducting character.The inferior performance of the passive film on the sensitized alloy is ascribed to the increased potential drop across the film/solution interface,the high defect densities,and the pronounced n-type character of the passive film resulting from the variations in its constituents.The precipitation ofσphase during sensitization significantly increases intergranular corrosion susceptibility and decreases critical pitting temperature,breakdown potential,and polarization resistance in hot concentrated seawater.展开更多
Over the past few years,the Cu element has attracted much attention in duplex stainless steels.It undoubtedly holds advantageous in regulating the two-phase proportion and austenite stability and is also one of the cr...Over the past few years,the Cu element has attracted much attention in duplex stainless steels.It undoubtedly holds advantageous in regulating the two-phase proportion and austenite stability and is also one of the crucial factors affecting the corrosion resistance.However,the systematic research on the impact of Cu addition to lean duplex stainless steels remains insufficient.In this study,a novel Cu-alloyed Mn-N-type 20Cr lean duplex stainless steel was developed and the effect of Cu on the strain hardening capacity and corrosion resistance was analyzed.The results show that the Cu addition increases the volume fraction and stability of the austenite,retards the martensitic transformation,and extends the transformation-induced plasticity effect to a wider strain range.Compared to the Cu-free steel,the plasticity of Cu-containing steel can be increased by~26%.Additionally,the addition of Cu redistributes the Cr and N elements in the ferrite and austenite phases,thereby improving the corrosion resistance of the lean duplex stainless steel.展开更多
Codebooks have been indispensable for wireless communication standard since the first release of the Long-Term Evolution in 2009.They offer an efficient way to acquire the channel state information(CSI)for multiple an...Codebooks have been indispensable for wireless communication standard since the first release of the Long-Term Evolution in 2009.They offer an efficient way to acquire the channel state information(CSI)for multiple antenna systems.Nowadays,a codebook is not limited to a set of pre-defined precoders,it refers to a CSI feedback framework,which is more and more sophisticated.In this paper,we review the codebooks in 5G New Radio(NR)standards.The codebook timeline and the evolution trend are shown.Each codebook is elaborated with its motivation,the corresponding feedback mechanism,and the format of the precoding matrix indicator.Some insights are given to help grasp the underlying reasons and intuitions of these codebooks.Finally,we point out some unresolved challenges of the codebooks for future evolution of the standards.In general,this paper provides a comprehensive review of the codebooks in 5G NR and aims to help researchers understand the CSI feedback schemes from a standard and industrial perspective.展开更多
Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide.These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinne...Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide.These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinned thrust sheets from underlying foreland-verging duplexes.Although the main fac-tors controlling the development of passive-roof duplexes have mostly been identified,some of their intrinsic characteristics are still poorly defined.These relate to their spatio-temporal relationships to thrust faults located further inland in orogens,and their ability to transport younger rocks over older ones.This study explores these issues in the Casentino-Romagna axial sector of the Northern Apennines,which expose regional forethrusts and backthrusts.Detailed field mapping and analysis of superposed tectonic structures were integrated with apatite fission-track dating for constraining the tim-ing of rock exhumation and correlated tectonic events.Collectively,the results have allowed us to inter-pret the evolution of the study area in terms of two main deformation stages.Specifically,a first,long phase(D_(1))progressed from NE-directed,in-sequence thrusting(∼18 to∼10-9 Ma)to late out-of-sequence thrusting(∼8-5 Ma).A successive deformation phase,that we refer to as D_(2)(∼4-2 Ma),con-sisted of backthrusts and associated folds that were ubiquitous and systematically overprinted onto the foreland-verging D_(1)structures.Such retrovergent structures identify a late deformation phase dom-inated by the development of passive-roof duplexes that propagated hinterlandward into the orogen up to beyond the primary watershed ridge.Orogen-scale processes controlled the evolution of forelandward D_(1)-phase thrusts,although late erosion could have played a major role by bringing the Apennine thrust wedge toward an undercritical state.The latter conditions could have contributed to keeping the out-of-sequence thrusts active,and eventually promoted the development of the D_(2)passive-roof duplexes.展开更多
Traditional metals often exhibit a trade-offbetween strength and plasticity,limiting their wide application of metals in aerospace,transportation,energy industry and other fields[1-3].In order to overcome this dilemma...Traditional metals often exhibit a trade-offbetween strength and plasticity,limiting their wide application of metals in aerospace,transportation,energy industry and other fields[1-3].In order to overcome this dilemma,high-entropy alloys(HEAs),proposed by Yeh et al.and Cantor et al.,are currently of great interest in the materials community due to their excellent mechanical properties[4-7].To further promote the wide application of HEAs in industrial production,Lu et al.developed a new eutectic high-entropy alloy(EHEAs)by combining the potential advantages of traditional eutectic alloys and HEAs[8-11].展开更多
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s...This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.展开更多
The hot deformation behavior of 2707 hyper duplex stainless steel(HDSS)was investigated through a hot compression test at 950℃ to 1,250℃ at strain rates of 0.01 s^(-1) to 10 s^(-1).Observations from the flow stress ...The hot deformation behavior of 2707 hyper duplex stainless steel(HDSS)was investigated through a hot compression test at 950℃ to 1,250℃ at strain rates of 0.01 s^(-1) to 10 s^(-1).Observations from the flow stress curves reveal a balance between work hardening and dynamic recovery at the beginning of the deformation and subsequently demonstrate various softening mechanisms with the increase of strain.At high strain rates,dynamic recovery is the prevailing mechanism,whereas,at medium and low strain rates,dynamic recrystallization becomes dominant.The constitutive equation was constructed,and the deformation activation energy was calculated to be 645.46 kJ·mol^(-1).The hot processing map was drawn based on the dynamic material model at a strain of 0.8.The results indicate that the hot workability of 2707 HDSS decreases due to its high alloying content.The microstructure evolution of 2707 HDSS at 1,050℃ was identified by means of electron backscatter diffraction and transmission electron microscopy.The results demonstrate that the ferrite completes dynamic recrystallization at the strain rate of 1 s^(-1).The softening process of austenite is influenced by ferrite and mainly experiences dynamic recovery.The austenite located at the α/γ phase boundaries tends to undergo dynamic recrystallization.展开更多
An alternating magnetic field(AMF)was introduced into the narrow gap laser-arc hybrid welding process for 2205 duplex stainless steel thick plates.The corrosion performance of the welded joints was evaluated through e...An alternating magnetic field(AMF)was introduced into the narrow gap laser-arc hybrid welding process for 2205 duplex stainless steel thick plates.The corrosion performance of the welded joints was evaluated through electrochemical studies.The results revealed that joints welded with the application of AMF had a lower corrosion current density compared to those welded without an external AMF.Additionally,these joints showed higher pitting potential and polarization resistance.Microscopic electrochemical analysis indicated that joints subjected to AMF exhibited minimal cathodic current in simulated seawater,with only slight fluctuations in the anodic current peak.Overall,the corrosion levels on the joint surfaces were relatively low.After 4 h of immersion in the corrosive medium,the average impedance of joints exposed to AMF increased by 60.7%compared to those not influenced by a magnetic field.These findings suggest that applying AMF during the narrow gap laser-arc hybrid welding process can significantly improve the corrosion resistance of duplex stainless steel welded joints,reducing their susceptibility to stress corrosion in seawater-like environments.展开更多
Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crysta...Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crystallization were evaluated by measurements of hardnesses of coating surface and cross-section, and by unlubricated friction and wear experiments. The results indicate that it is possible to prepare electroless Ni-P/Ni-W-P duplex coatings by sequential immersion in two different plating baths. After laser crystallization, the microstructures of electroless Ni-P/Ni-W-P duplex coatings present the characteristics of higher degree of crystallization and larger grain size for outer layer Ni-W-P than inner Ni-P, but outer layer has a higher hardness. The wear resistance of laser-treated duplex coatings in a given process parameter conditions is superior to the as-plated ones. Laser treatment was performed directly in air without argon protection, which provides the possibility for application of industrialized production.展开更多
With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ...With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ultra-high bandwidth,high security and low environmental noise.In this paper,a THz duplexer with a half-wavelength coupling structure and a sub-harmonic mixer operating at 216 GHz and 204 GHz are designed and measured.Based on these key devices,a 220 GHz frequency-division multiplexing communication system is proposed,with a real-time data rate of 10.4 Gbit/s for one channel and a transmission distance of 15 m.The measured constellation diagram of two receivers is clearly visible,the signal-to-noise ratio(SNR)is higher than 22 dB,and the bit error ratio(BER)is less than 10^(−8).Furthermore,the high definition(HD)4K video can also be transmitted in real time without stutter.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under project no.62071357the Fundamental Research Funds for the Central Unive rsities。
文摘A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when the order of the duplexer is too high,so it is not easy to fall into the local solution.In order to solve this problem,a new optimization strategy is proposed in this paper,that is,two-channel filters are optimized separately,which can reduce the number of optimization variables and greatly reduce the probability of results falling into local solutions.The optimization method combines the self-adaptive differential evolution algorithm(SADE)with the Levenberg-Marquardt(LM)algorithm to get a global solution more easily and accelerate the optimization speed.To verify its practical value,we design a 5 G duplexer based on the proposed method.The duplexer has a large external coupling,and how to achieve a feed structure with a large coupling bandwidth at the source is also discussed.The experimental results show that the proposed optimization method can realize the synthesis of higher-order duplexers compared with the traditional methods.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 5G research program of China Mobile Research Institute (No.[2015] 0615)+1 种基金Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘The full-duplex(FD) based wireless communication devices,which are capable of concurrently transmitting and receiving signals with a single frequency band,suffer from a severe self-interference(SI) due to the large power difference between the devices' own transmission and the useful signal comes from the remote transmitters. To enable the practical FD devices to be implementable,the SI power must be sufficiently suppressed to the level of background noise power,making the received signal-to-interference-plus-noise ratio(SINR) satisfy the decoding requirement. In this paper,the design and implementation of the duplexer for facilitating SI cancellation in FD based wireless communications are investigated,with a new type of duplexer(i.e. an improved directional coupler) designed for improving the spatial suppression of the SI power. Furthermore,the practical circuit boards are designed and verified for the proposed prototype,showing that the spatial suppression capability may be up to 36 d B(i.e. much higher than that attainable in the commonly designed ferrite circulator) by using the proposed design.
基金supported by the National Natural Science Foundation of China(Nos.U1960115 and U21A20116)the Fundamental Research Funds for the Central Universities(No.N232405-10)Special thanks are due to the instrumental and data analysis from Analytical and Testing Center,Northeastern University.
文摘The trade-offbetween strength and ductility remains a persistent obstacle in the development of advanced structural materials.In the present study,a novel dual-heterogeneous structure with a bimodal grain distribution in both ferrite and austenite phases was fabricated via cold rolling and partial recrystallization annealing on solution-treated 2205 duplex stainless steel(DSS).The processed steel exhibited superior mechanical properties,with the yield strength increasing from 586 MPa to 903 MPa,and the ultimate tensile strength from 796 MPa to 1082 MPa,while maintaining a high total elongation of 35.3%.Based on in-situ electron backscatter diffraction(EBSD)and scanning electron microscope(SEM)analyses,the microstructural deformation behavior and strengthening mechanisms of the dual-heterostructured 2205 DSS were elucidated.The outstanding combination of strength and ductility was ascribed to the synergistic effects of grain refinement,dislocation strengthening,and hetero-deformation induced(HDI)strengthening.Moreover,the high ductility in DSS was attributed to the coactivation of cross-slip systems in ferrite{110}and{112}along with the single-slip systems in austenite{111}.These findings provide a new strategy for the design and development of high-strength and ultra-high-strength DSSs.
基金Research Foundation of Shenyang National Laboratory for Materials Science(L2019F15)Ling Chuang Research Project of China National Nuclear Corporation(CNNC-LCKY-202279)。
文摘The microstructures and corrosion behavior of 1.0wt%Gd-containing neutron-absorbing duplex stainless steel annealed at different temperatures were studied.Results reveal that the content of Gd-containing secondary phase increases with increasing the annealing temperatures to 1080℃,and then decreases.In the sample annealed at 1080℃,M-Gd(M=Fe,Cr,Ni)intermetallic with M_(3)Gd as the core phase and M_(12)Gd as the shell is the primary secondary phase.In the sample annealed at 1140℃,M_(3)Gd phase is dominant.The corrosion behavior of the two annealed steel samples were analyzed in NaCl,HCl and H_(3)BO_(3) solutions.It is found that the sample annealed at 1140℃ has lower corrosion rate.M_(3)Gd is more electrochemically active than M_(12)Gd when the sample is immersed in NaCl and HCl solutions,but more noble in H_(3)BO_(3) solution.
文摘Super duplex stainless steels(SDSSs)and hyper duplex stainless steels(HDSSs),with more alloying elements content,are more corrosion resistant than the standard grades.Progresses of research works on weldability of SDSSs and HDSSs in recent years are reviewed in this paper.If proper heat input is provided,SDSSs and HDSSs can be welded with most fusion welding processes,while tungsten inert gas welding is the most popular process.SDSSs and HDSSs are more prone to secondary phases precipitation than the standard and lean grades,and heat input for SDSSs and HDSSs welding is restricted to a smaller range.Matching filler materials are usually recommended for SDSSs and HDSSs welding,rather than Ni-riched ones for standard and lean grades.Nitrogen addition in shielding gas is always beneficial.Post weld heat treatment with slow cooling rate will be harmful.Hot cracking tendency of SDSSs and HDSSs joints is not high,but sometimes they can suffer from hydrogen induced stress cracking.
基金the financial support of the National Natural Science Foundation of China(Nos.52375339 and 52305399)the Basic and Applied Basic Research Program of Guangdong Province(No.2021A1515110729).
文摘The precipitation behavior,corrosion,and passivation performance of solutionized and severely sensitized SAF 2507 super-duplex stainless steel subjected to a temperature of 900℃for 10 h are investigated in a twofold concentrated seawater at 60℃.The sensitized alloy exhibits 66.1%γphases and 33.9%σphases,and the originalαphases have completely decomposed through eutectoid transformation,resulting in a microstructure characterized by coarse blockyσ/γ2 aggregates.High defect densities and an increased amount of oxyhydroxides and hydroxides are present in the passive film on the sensitized alloy,thereby enhancing n-type semiconducting character.The inferior performance of the passive film on the sensitized alloy is ascribed to the increased potential drop across the film/solution interface,the high defect densities,and the pronounced n-type character of the passive film resulting from the variations in its constituents.The precipitation ofσphase during sensitization significantly increases intergranular corrosion susceptibility and decreases critical pitting temperature,breakdown potential,and polarization resistance in hot concentrated seawater.
基金supported by the Jilin Scientific and Technological Development Program(No.YDZJ202201ZYTS669)the National Natural Science Foundation of China(Nos.51974032,52174355,51874043 and 51604034).
文摘Over the past few years,the Cu element has attracted much attention in duplex stainless steels.It undoubtedly holds advantageous in regulating the two-phase proportion and austenite stability and is also one of the crucial factors affecting the corrosion resistance.However,the systematic research on the impact of Cu addition to lean duplex stainless steels remains insufficient.In this study,a novel Cu-alloyed Mn-N-type 20Cr lean duplex stainless steel was developed and the effect of Cu on the strain hardening capacity and corrosion resistance was analyzed.The results show that the Cu addition increases the volume fraction and stability of the austenite,retards the martensitic transformation,and extends the transformation-induced plasticity effect to a wider strain range.Compared to the Cu-free steel,the plasticity of Cu-containing steel can be increased by~26%.Additionally,the addition of Cu redistributes the Cr and N elements in the ferrite and austenite phases,thereby improving the corrosion resistance of the lean duplex stainless steel.
基金supported by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China under Grant 62071191
文摘Codebooks have been indispensable for wireless communication standard since the first release of the Long-Term Evolution in 2009.They offer an efficient way to acquire the channel state information(CSI)for multiple antenna systems.Nowadays,a codebook is not limited to a set of pre-defined precoders,it refers to a CSI feedback framework,which is more and more sophisticated.In this paper,we review the codebooks in 5G New Radio(NR)standards.The codebook timeline and the evolution trend are shown.Each codebook is elaborated with its motivation,the corresponding feedback mechanism,and the format of the precoding matrix indicator.Some insights are given to help grasp the underlying reasons and intuitions of these codebooks.Finally,we point out some unresolved challenges of the codebooks for future evolution of the standards.In general,this paper provides a comprehensive review of the codebooks in 5G NR and aims to help researchers understand the CSI feedback schemes from a standard and industrial perspective.
文摘Passive-roof duplexes accommodate shortening at the mountain front of many fold-and-thrust belts worldwide.These structures typically manifest at the surface by hinterland-verging backthrusts that decouple thin-skinned thrust sheets from underlying foreland-verging duplexes.Although the main fac-tors controlling the development of passive-roof duplexes have mostly been identified,some of their intrinsic characteristics are still poorly defined.These relate to their spatio-temporal relationships to thrust faults located further inland in orogens,and their ability to transport younger rocks over older ones.This study explores these issues in the Casentino-Romagna axial sector of the Northern Apennines,which expose regional forethrusts and backthrusts.Detailed field mapping and analysis of superposed tectonic structures were integrated with apatite fission-track dating for constraining the tim-ing of rock exhumation and correlated tectonic events.Collectively,the results have allowed us to inter-pret the evolution of the study area in terms of two main deformation stages.Specifically,a first,long phase(D_(1))progressed from NE-directed,in-sequence thrusting(∼18 to∼10-9 Ma)to late out-of-sequence thrusting(∼8-5 Ma).A successive deformation phase,that we refer to as D_(2)(∼4-2 Ma),con-sisted of backthrusts and associated folds that were ubiquitous and systematically overprinted onto the foreland-verging D_(1)structures.Such retrovergent structures identify a late deformation phase dom-inated by the development of passive-roof duplexes that propagated hinterlandward into the orogen up to beyond the primary watershed ridge.Orogen-scale processes controlled the evolution of forelandward D_(1)-phase thrusts,although late erosion could have played a major role by bringing the Apennine thrust wedge toward an undercritical state.The latter conditions could have contributed to keeping the out-of-sequence thrusts active,and eventually promoted the development of the D_(2)passive-roof duplexes.
基金financial supported by the Natural Science Foundation of Jiangsu Provincial Education Department(No.24KJB430003)the Natural Science Foundation for Young Scholars of Jiangsu Province(No.BK20240979)+3 种基金support of Natural Science Foundation for Young Scholars of Jiangsu Province(No.BK20220628)the National Natural Science Foundation for Young Scholars of China(52301130)the Changzhou Sci&Tech program(No.GJ20220153)support of the Natural Science Foundation of Jiangsu Provincial Education Department(No.21KJB430001).
文摘Traditional metals often exhibit a trade-offbetween strength and plasticity,limiting their wide application of metals in aerospace,transportation,energy industry and other fields[1-3].In order to overcome this dilemma,high-entropy alloys(HEAs),proposed by Yeh et al.and Cantor et al.,are currently of great interest in the materials community due to their excellent mechanical properties[4-7].To further promote the wide application of HEAs in industrial production,Lu et al.developed a new eutectic high-entropy alloy(EHEAs)by combining the potential advantages of traditional eutectic alloys and HEAs[8-11].
基金Project supported by Jilin Provincial Science and Technology Development Plan(Grant No.20220101137JC).
文摘This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.
基金funded by the Major Science and Technology Program of Luoyang,China(Grant No.2101005A)Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology.
文摘The hot deformation behavior of 2707 hyper duplex stainless steel(HDSS)was investigated through a hot compression test at 950℃ to 1,250℃ at strain rates of 0.01 s^(-1) to 10 s^(-1).Observations from the flow stress curves reveal a balance between work hardening and dynamic recovery at the beginning of the deformation and subsequently demonstrate various softening mechanisms with the increase of strain.At high strain rates,dynamic recovery is the prevailing mechanism,whereas,at medium and low strain rates,dynamic recrystallization becomes dominant.The constitutive equation was constructed,and the deformation activation energy was calculated to be 645.46 kJ·mol^(-1).The hot processing map was drawn based on the dynamic material model at a strain of 0.8.The results indicate that the hot workability of 2707 HDSS decreases due to its high alloying content.The microstructure evolution of 2707 HDSS at 1,050℃ was identified by means of electron backscatter diffraction and transmission electron microscopy.The results demonstrate that the ferrite completes dynamic recrystallization at the strain rate of 1 s^(-1).The softening process of austenite is influenced by ferrite and mainly experiences dynamic recovery.The austenite located at the α/γ phase boundaries tends to undergo dynamic recrystallization.
基金supported by the National Natural Science Foundation of China(No.52265054)the Inner Mongolia Autonomous Region Natural Science Foundation Project(No.2022ZD03)+3 种基金the Inner Mongolia Autonomous Region Science and Technology Plan Project(No.2020GG0313)the Inner Mongolia Autonomous Region Natural Science Foundation Doctoral Fund Project,(No.2021BS05016)the Construction project of integrated research and development platform for key technologies in the development and processing of new nonferrous metal materials(No.RZ2300001971)the Basic Research Business Fee Project for Autonomous Region Directly Affiliated Universities(Nos.JY20220199 and JY20220028).
文摘An alternating magnetic field(AMF)was introduced into the narrow gap laser-arc hybrid welding process for 2205 duplex stainless steel thick plates.The corrosion performance of the welded joints was evaluated through electrochemical studies.The results revealed that joints welded with the application of AMF had a lower corrosion current density compared to those welded without an external AMF.Additionally,these joints showed higher pitting potential and polarization resistance.Microscopic electrochemical analysis indicated that joints subjected to AMF exhibited minimal cathodic current in simulated seawater,with only slight fluctuations in the anodic current peak.Overall,the corrosion levels on the joint surfaces were relatively low.After 4 h of immersion in the corrosive medium,the average impedance of joints exposed to AMF increased by 60.7%compared to those not influenced by a magnetic field.These findings suggest that applying AMF during the narrow gap laser-arc hybrid welding process can significantly improve the corrosion resistance of duplex stainless steel welded joints,reducing their susceptibility to stress corrosion in seawater-like environments.
基金Project (ZR2011EMM014) supported by the Natural Science Foundation of Shandong Province, China
文摘Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crystallization were evaluated by measurements of hardnesses of coating surface and cross-section, and by unlubricated friction and wear experiments. The results indicate that it is possible to prepare electroless Ni-P/Ni-W-P duplex coatings by sequential immersion in two different plating baths. After laser crystallization, the microstructures of electroless Ni-P/Ni-W-P duplex coatings present the characteristics of higher degree of crystallization and larger grain size for outer layer Ni-W-P than inner Ni-P, but outer layer has a higher hardness. The wear resistance of laser-treated duplex coatings in a given process parameter conditions is superior to the as-plated ones. Laser treatment was performed directly in air without argon protection, which provides the possibility for application of industrialized production.
基金supported by the National Natural Science Foundation of China under Grant Nos.62022022 and 62101107the National Key R&D Program of China under Grant No.2018YFB1801502+1 种基金China Postdoctoral Science Foundation under Grant No.2021TQ0057ZTE Industry-Uni⁃versity-Institute Cooperation Funds.
文摘With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ultra-high bandwidth,high security and low environmental noise.In this paper,a THz duplexer with a half-wavelength coupling structure and a sub-harmonic mixer operating at 216 GHz and 204 GHz are designed and measured.Based on these key devices,a 220 GHz frequency-division multiplexing communication system is proposed,with a real-time data rate of 10.4 Gbit/s for one channel and a transmission distance of 15 m.The measured constellation diagram of two receivers is clearly visible,the signal-to-noise ratio(SNR)is higher than 22 dB,and the bit error ratio(BER)is less than 10^(−8).Furthermore,the high definition(HD)4K video can also be transmitted in real time without stutter.