The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,a...The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks.展开更多
Microstructural features of a duplex-phase Zr-2.5Nb alloy were investigated in detail using electron channeling contrast (ECC) imaging and electron backscatter diffraction (EBSD) technique in an emission gun scann...Microstructural features of a duplex-phase Zr-2.5Nb alloy were investigated in detail using electron channeling contrast (ECC) imaging and electron backscatter diffraction (EBSD) technique in an emission gun scanning electron microscope (FEGSEM). The excellent resolution provided by the FEGSEM promises the combined utilization of both techniques to be quite adequate for characterizing the duplex-phase microstructures. Results show that the microstructure of the Zr-2.5Nb alloy is composed of bulk a grains (majority) in equiaxed or plate shape and thin 13 films (minority) surrounding the bulk grains, with their average grain size and thickness measured to be 1.4 prn and 72 nm, respectively. Analyses on a-grain boundaries reveal a number of low angle boundaries, most of which belong to deformation-induced dislocation boundaries. Measurements on relative propor- tions of various Burgers boundaries suggest very weak (if any) variant selection during 13 ~ a cooling, which should be re- lated to deformation-induced higher nucleation rate of a phases. Compared to earlier attempts, more satisfactory indexing of fine β phases (down to nanoscale) is attained by the FEGSEM-based EBSD. Examples are presented to clearly reveal well-obeyed Burgers orientation relationships between adjacent α and β phases. Finally, it is deduced that continuing applica- tion of the FEGSEM-based EBSD to duplex-phase Zr alloys could help clarify controversies like the deformation priority of the two phases.展开更多
基金the National Natural Science Foundation of China(No.52205240).
文摘The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks.
基金supported by the National Natural Science Foundation of China(Grant Nos.5140104051371202+3 种基金51531005&51421001)China Postdoctoral Science Foundation(Grant No.2015M572446)Postdoctoral Science Foundation of Chongqing(Grant No.Xm2015003)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ1500901)
文摘Microstructural features of a duplex-phase Zr-2.5Nb alloy were investigated in detail using electron channeling contrast (ECC) imaging and electron backscatter diffraction (EBSD) technique in an emission gun scanning electron microscope (FEGSEM). The excellent resolution provided by the FEGSEM promises the combined utilization of both techniques to be quite adequate for characterizing the duplex-phase microstructures. Results show that the microstructure of the Zr-2.5Nb alloy is composed of bulk a grains (majority) in equiaxed or plate shape and thin 13 films (minority) surrounding the bulk grains, with their average grain size and thickness measured to be 1.4 prn and 72 nm, respectively. Analyses on a-grain boundaries reveal a number of low angle boundaries, most of which belong to deformation-induced dislocation boundaries. Measurements on relative propor- tions of various Burgers boundaries suggest very weak (if any) variant selection during 13 ~ a cooling, which should be re- lated to deformation-induced higher nucleation rate of a phases. Compared to earlier attempts, more satisfactory indexing of fine β phases (down to nanoscale) is attained by the FEGSEM-based EBSD. Examples are presented to clearly reveal well-obeyed Burgers orientation relationships between adjacent α and β phases. Finally, it is deduced that continuing applica- tion of the FEGSEM-based EBSD to duplex-phase Zr alloys could help clarify controversies like the deformation priority of the two phases.