期刊文献+
共找到211篇文章
< 1 2 11 >
每页显示 20 50 100
Dung Beetle Optimization Algorithm Based on Bounded Reflection Optimization and Multi-Strategy Fusion for Multi-UAV Trajectory Planning
1
作者 Weicong Tan Qiwu Wu +2 位作者 Lingzhi Jiang Tao Tong Yunchen Su 《Computers, Materials & Continua》 2025年第11期3621-3652,共32页
This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ... This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts. 展开更多
关键词 dung beetle optimizer algorithm swarm intelligence MULTI-UAV trajectory planning complex environments
在线阅读 下载PDF
Elite Dung Beetle Optimization Algorithm for Multi-UAV Cooperative Search in Mountainous Environments 被引量:2
2
作者 Xiaoyong Zhang Wei Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1677-1694,共18页
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th... This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation. 展开更多
关键词 Mountainous environment Multi-UAV cooperative search Environment information consistency Elite dung beetle optimization algorithm(EdboA) Path planning
在线阅读 下载PDF
基于DBO-DAOD的未知雷达调制方式识别算法
3
作者 张本辉 刘松涛 晁玉龙 《系统工程与电子技术》 北大核心 2025年第6期1833-1842,共10页
随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分... 随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分分布对齐(distribution alignment with open set difference,DAOD)算法引入雷达调制方式识别领域,设计具体应用的技术方案,并针对DAOD算法所需参数依靠先验知识或者试探选取问题,利用蜣螂优化(dung beetle optimizer,DBO)算法进行参数优化。仿真结果表明:在单个雷达调制方式未知情形下,精确度Accuracy和F-measure分值的平均值分别可达91.34%和95.11%;在多个雷达调制方式未知情形下,Accuracy和F-measure的平均值分别可达91.37%、93.69%;与DAOD算法相比,上述结果分别提升了3.77%、1.83%、21.17%和12.06%。因此,DBO-DAOD算法可有效提升未知雷达调制方式的识别率。 展开更多
关键词 开集差分分布对齐 蜣螂优化算法 未知调制方式识别 影响机理
在线阅读 下载PDF
基于DBO-BP神经网络的活动导叶磨蚀预测模型
4
作者 陈小翠 姬中瑞 +1 位作者 郑源 陈文杰 《华中科技大学学报(自然科学版)》 北大核心 2025年第7期115-121,共7页
为高效预测混流式水轮机活动导叶的磨蚀情况,基于高速加沙实验数据,进行复合树脂砂浆涂层材料的磨蚀模型拟合.基于该磨蚀模型,在Fluent平台上通过用户自定义函数(UDF)进行编译,实现活动导叶在不同工况下的磨蚀仿真分析.在活动导叶磨蚀... 为高效预测混流式水轮机活动导叶的磨蚀情况,基于高速加沙实验数据,进行复合树脂砂浆涂层材料的磨蚀模型拟合.基于该磨蚀模型,在Fluent平台上通过用户自定义函数(UDF)进行编译,实现活动导叶在不同工况下的磨蚀仿真分析.在活动导叶磨蚀分析的基础上,基于蜣螂优化算法优化的BP神经网络,提出了一种新型高效的磨蚀预测模型,通过流量、流道中颗粒浓度及当前磨蚀量等参数来进行未来磨蚀量的预测,同时与普通BP神经网络的预测模型进行对比.结果表明:蜣螂优化算法使BP神经网络的均方根误差降低了40%以上,平均绝对误差降低了60%,提高了BP神经网络的计算精度. 展开更多
关键词 磨蚀模型 蜣螂优化算法 BP神经网络 活动导叶 复合树脂砂浆涂层
原文传递
基于DBO-FHA的双向CLLLC谐振变换器参数优化设计
5
作者 马帅旗 贺海育 +2 位作者 任思嘉 赵佳瑶 张力蕾 《汽车技术》 北大核心 2025年第2期37-45,共9页
针对采用基波分析(FHA)法设计CLLLC变换器参数时,步骤繁杂、无法找到变换器最优硬件参数的问题,提出一种基于基波分析法和蜣螂优化(DBO)算法的CLLLC变换器参数设计和寻优策略。通过FHA推导出变换器参数的设计边界,并将其作为设计约束条... 针对采用基波分析(FHA)法设计CLLLC变换器参数时,步骤繁杂、无法找到变换器最优硬件参数的问题,提出一种基于基波分析法和蜣螂优化(DBO)算法的CLLLC变换器参数设计和寻优策略。通过FHA推导出变换器参数的设计边界,并将其作为设计约束条件;根据变换器的转换效率与硬件参数间的关系,建立变换器工作效率函数;利用DBO算法在设计约束范围内,对目标函数进行寻优,获得最佳效率点的硬件参数。试验结果表明:采用所提出方案设计制作的样机效率可达97%,进一步证明了该方案的可行性。 展开更多
关键词 基波分析法 蜣螂优化算法 双向谐振变换器 参数优化
在线阅读 下载PDF
基于SConvNeXt-ECMS与DBO-RELM模型的滚动轴承故障诊断方法
6
作者 戚晓利 毛俊懿 +3 位作者 王兆俊 王志文 崔德海 赵方祥 《航空动力学报》 北大核心 2025年第5期460-474,共15页
针对现有基于深度学习的滚动轴承故障诊断方法存在准确度不高、泛化性较差的缺点,提出了一种基于SConvNeXt-ECMS(the ConvNeXt network based on shuffled convolution-efficient channel and multi-scale spatial attention module)与D... 针对现有基于深度学习的滚动轴承故障诊断方法存在准确度不高、泛化性较差的缺点,提出了一种基于SConvNeXt-ECMS(the ConvNeXt network based on shuffled convolution-efficient channel and multi-scale spatial attention module)与DBO-RELM(dung beetleoptimizer regularized extreme learning machine)的滚动轴承故障诊断模型。将ECMS注意力机制与分流卷积模块融入ConvNeXt网络,提升ConvNeXt网络的特征提取能力;使用蜣螂优化算法完成参数寻优后的RELM替换网络原有分类层,提升网络对相近特征的分辨能力;利用哈尔滨工业大学航空轴承故障数据集仿真实验,验证所提分流卷积对ConvNeXt网络的提升效果;使用帕德博恩大学数据集进行滚动轴承混合故障诊断实验,验证所提SConvNeXt-ECMS与DBO-RELM模型的分类效果。仿真实验结果表明:所提SConvNeXt网络在航空轴承故障分类任务中,准确率可达100%,优于其他现有网络;帕德博恩大学滚动轴承混合故障诊断实验表明,所提ECMS注意力机制以及DBO-RELM方法均对原网络的性能有进一步的提升,新模型对滚动轴承混合故障的诊断准确率最高可达99.94%,相较于其他现有的滚动轴承故障诊断模型,均具有更高的故障诊断准确率和更强的泛化能力。 展开更多
关键词 故障诊断 滚动轴承 分流卷积 注意力机制 正则化极限学习机(RELM) 蜣螂优化算法(dbo)
原文传递
基于IDBO-TVFEMD与改进小波阈值函数的滚动轴承复合故障诊断方法
7
作者 别锋锋 张雨婷 +4 位作者 李倩倩 丁学平 彭光成 戴雨萱 张瀚阳 《机械强度》 北大核心 2025年第10期51-62,共12页
针对滚动轴承故障的振动信号在强噪声背景下容易受到干扰不易提取的情况,提出了一种基于改进的蜣螂优化器(Improved Dung Beetle Optimizer,IDBO)算法-时变滤波经验模态分解(Time Varying Filtered Empirical Mode Decomposition,TVFEMD... 针对滚动轴承故障的振动信号在强噪声背景下容易受到干扰不易提取的情况,提出了一种基于改进的蜣螂优化器(Improved Dung Beetle Optimizer,IDBO)算法-时变滤波经验模态分解(Time Varying Filtered Empirical Mode Decomposition,TVFEMD)与新型小波阈值函数去噪相结合的故障诊断方法。首先,运用IDBO对TVFEMD中B样条阶数和带宽阈值ξ进行迭代寻优,得出最佳参数组合,然后,对原始信号进行TVFEMD,得到各本征模态函数(Intrinsic Mode Function,IMF)分量,通过相关系数准则去除其中的无关分量,重构新信号。随后,运用改进的小波阈值函数对新信号进行二次去噪处理。最后,对处理完的信号进行包络谱分析,提取其故障特征频率。通过仿真模拟信号与故障模拟试验分析研究,实现IDBOTVFEMD与改进小波阈值函数相结合的故障诊断方法和经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、完全集合经验模态分解去噪(Complete EEMD with Adaptive Noise,CEEMDAN)方法的对比,研究结果表明,提出的算法模型具备更好的诊断效果。 展开更多
关键词 滚动轴承 时变滤波经验模态分解 蜣螂优化器算法 小波阈值函数
在线阅读 下载PDF
基于改进DBO-BP算法的辽宁省城市交通二氧化碳排放预测
8
作者 王丹 赵嘉琪 《沈阳大学学报(自然科学版)》 2025年第5期407-413,共7页
提出一种新的预测模型,该模型结合了改进的蜣螂优化算法与BP神经网络,显著提升了碳排放预测的准确性。在模型构建过程中,采用最优拉丁超立方抽样设计,有效优化了算法种群分布,使得初始解集分布更为均匀,进而增强了模型的预测能力。通过... 提出一种新的预测模型,该模型结合了改进的蜣螂优化算法与BP神经网络,显著提升了碳排放预测的准确性。在模型构建过程中,采用最优拉丁超立方抽样设计,有效优化了算法种群分布,使得初始解集分布更为均匀,进而增强了模型的预测能力。通过对1990—2021年辽宁省交通运输行业能源消耗产生的碳排放量进行自上而下法的估算,并结合8项关键碳排放影响指标的Pearson相关系数分析,进行了仿真实验。实验结果表明,本模型在碳排放预测方面具有较高的预测精度。 展开更多
关键词 碳排放预测 BP神经网络 最优拉丁超立方 蜣螂优化算法 Pearson相关性
在线阅读 下载PDF
基于IDBO-IP&O算法局部遮阴下光伏系统MPPT跟踪研究 被引量:2
9
作者 侯帅虎 赵辉 +1 位作者 岳有军 王红君 《复杂系统与复杂性科学》 北大核心 2025年第1期146-153,共8页
为解决光伏MPPT实时跟踪问题,减少光伏阵列在局部遮阴时光伏系统输出功率的损失,提出基于改进蜣螂优化算法(IDBO)结合变步长扰动观察法(IP&O)的双层控制模型。在上层模型中将最优个体引导策略和Levy飞行引入蜣螂优化算法,动态调整... 为解决光伏MPPT实时跟踪问题,减少光伏阵列在局部遮阴时光伏系统输出功率的损失,提出基于改进蜣螂优化算法(IDBO)结合变步长扰动观察法(IP&O)的双层控制模型。在上层模型中将最优个体引导策略和Levy飞行引入蜣螂优化算法,动态调整区域边界,快速搜索全局最大功率点,减小跟踪波动;在下层模型采用IP&O进行局部跟踪,在保证精度的同时提高了算法收敛的实时性。通过3种复杂遮阴环境以及动态阴影环境下该算法与其他算法对比,验证了该算法在MPPTs中的有效性。 展开更多
关键词 光伏阵列 最大功率点跟踪 蜣螂优化算法 局部遮阳 扰动观察法
在线阅读 下载PDF
基于VMD-IDBO-LSTM的光伏功率预测模型 被引量:2
10
作者 乔雅宁 贾宇琛 +1 位作者 高立艾 温鹏 《现代电子技术》 北大核心 2025年第6期168-174,共7页
针对光伏发电功率波动性强和预测准确度低的问题,提出一种基于变分模态分解(VMD)、改进蜣螂算法(IDBO)优化长短期记忆(LSTM)网络的光伏功率预测模型。利用VMD对光伏功率时序数据进行分解,得到不同频率但具有一定规律的子序列,从而达到... 针对光伏发电功率波动性强和预测准确度低的问题,提出一种基于变分模态分解(VMD)、改进蜣螂算法(IDBO)优化长短期记忆(LSTM)网络的光伏功率预测模型。利用VMD对光伏功率时序数据进行分解,得到不同频率但具有一定规律的子序列,从而达到减少光伏功率波动性的目的。利用可变螺旋搜索策略、Lévy飞行策略和自适应t分布变异策略来改进蜣螂算法,对改进后的蜣螂算法与其他优化算法进行性能测试对比,经过改进的蜣螂算法来优化LSTM中的网络隐含层个数和初始学习速率并建立预测模型,将各个子序列的预测值相加,从而得出最后的预测功率结果。通过实际算例表明,与LSTM预测模型、DBO-LSTM预测模型、VMD-DBO-LSTM预测模型相比,VMD-IDBO-LSTM模型预测精度较高,更具有准确性。 展开更多
关键词 光伏发电 功率预测 变分模态分解 改进蜣螂算法 长短期记忆网络 优化算法
在线阅读 下载PDF
基于PCA-DBO-SVR的林地土壤有机质高光谱反演模型 被引量:2
11
作者 邓昀 王君 +1 位作者 陈守学 石媛媛 《光谱学与光谱分析》 北大核心 2025年第2期569-583,共15页
森林土壤有机碳(SOC)是土壤中的有机物质(SOM)的碳部分,它对维持森林生态系统的平衡和稳定非常重要。传统实验通过化学方法分析土壤中有机物质的含量进而计算土壤中的有机碳,此类化学方法费时费力且产生化学废水污染环境。高光谱技术可... 森林土壤有机碳(SOC)是土壤中的有机物质(SOM)的碳部分,它对维持森林生态系统的平衡和稳定非常重要。传统实验通过化学方法分析土壤中有机物质的含量进而计算土壤中的有机碳,此类化学方法费时费力且产生化学废水污染环境。高光谱技术可以非接触、高效率地检测出土壤的养分信息。针对现有机器学习土壤有机质预测模型的精度和计算效率方面的不足,以广西国有黄冕林场和国有雅长林场为土壤样品采集点,基于全光谱数据利用主成分分析算法(PCA)筛选特征波段的最佳波长数量,并利用比一阶微分处理数据更加精细且能平衡光谱噪声和光谱分辨率之间的关系的分数阶微分为预处理方法之一对光谱数据进行变换处理,最后采用相对于传统的中心化算法拥有较高鲁棒性和容错能力的蜣螂算法(DBO)对支持向量回归机(SVR)的高斯核函数的参数组合进行优化。研究结果表明,PCA-DBO-SVR模型可以有效提高土壤有机质预测的决定系数R^(2)并降低预测均方根误差(RMSE)。PCA-DBO-SVR在对比预测模型中表现出最佳的泛化性能和准确度,其验证集R^(2)为0.942,RMSE为2.989 g·kg^(-1),展现了较好的准确性。 展开更多
关键词 近红外光谱 分数阶微分 蜣螂优化算法 土壤养分预测 支持向量回归机
在线阅读 下载PDF
基于改进DBO和多目标模型的食品分拣机器人分拣策略 被引量:4
12
作者 傅明娣 李忠 +1 位作者 王倩茹 赵飞 《食品与机械》 北大核心 2025年第3期88-93,共6页
[目的]提高Delta机器人在食品自动化分拣系统中的运行效率和稳定性。[方法]在对食品自动化分拣系统进行分析的基础上,提出一种结合机器视觉、多目标模型和改进蜣螂优化算法的Delta机器人分拣策略。通过机器视觉完成食品实时位置获取,建... [目的]提高Delta机器人在食品自动化分拣系统中的运行效率和稳定性。[方法]在对食品自动化分拣系统进行分析的基础上,提出一种结合机器视觉、多目标模型和改进蜣螂优化算法的Delta机器人分拣策略。通过机器视觉完成食品实时位置获取,建立以运行路径和稳定性综合最优为目标的分拣优化模型,通过改进的蜣螂优化算法对模型进行求解,并对试验方法的性能进行验证。[结果]与常规方法相比,试验方法具有更快的平均分拣速度和更小的末端振动冲击,平均分拣速度<0.60个/s,末端加速度均值<16 m/s^(2)。[结论]通过结合机器视觉、多目标模型和智能算法可以有效提高Delta机器人的分拣效率和稳定性。 展开更多
关键词 自动化 分拣系统 Delta机器人 机器视觉 多目标模型 蜣螂优化算法
在线阅读 下载PDF
基于DBO-VMD滤波的煤岩爆破电磁信号时-频特征 被引量:1
13
作者 王立涛 邱黎明 +5 位作者 韦梦菡 宋大钊 苟仁涛 刘琳 钟时强 谢天逸 《工程科学学报》 北大核心 2025年第3期441-453,共13页
井工开采爆破作业的常规振动监测易受周围环境或监测系统影响,使煤岩破裂信号提取困难,本文提出一种基于电磁信号的爆破监测方法,并研究了爆破电磁信号时频特征.首先,提出了基于蜣螂优化算法(DBO)寻优变分模态分解(VMD)参数的降噪模型,... 井工开采爆破作业的常规振动监测易受周围环境或监测系统影响,使煤岩破裂信号提取困难,本文提出一种基于电磁信号的爆破监测方法,并研究了爆破电磁信号时频特征.首先,提出了基于蜣螂优化算法(DBO)寻优变分模态分解(VMD)参数的降噪模型,得到了此类信号的最佳适应度函数为包络熵,该函数可迅速锁定最优参数组合,避免模态混叠现象,且基于DBO-VMD的降噪模型性能优于基于经验模态分解(EMD)的降噪模型;其次,提出了基于经验法的中心频率准则降噪方法,并证实了该方法降噪性能在信噪比表现上约是EMD的2倍;最后,发现煤岩破裂期的偏度大于0、峭度介于0.9~4.6,脉冲指标介于3.7~6.1,频段在20 kHz以下,主破裂事件发生时信号能量最大,主频段在5 kHz以下,并随着频率上升信号分量幅值迅速下降,非破裂期的低能脉冲则集中于0~3 kHz频段.本文的研究结果明确了爆破电磁辐射信号的时-频特征,为井工开采过程中爆破的电磁辐射监测奠定了理论基础. 展开更多
关键词 井下爆破 电磁辐射 蜣螂优化算法 变分模态分解 特征分析
在线阅读 下载PDF
基于MCADBO-SVM的刀具磨损状态监测方法 被引量:1
14
作者 吴洪宇 徐冠华 +1 位作者 唐波 秦炜 《机床与液压》 北大核心 2025年第5期64-74,共11页
针对刀具磨损状态分类识别精度不高的问题,提出一种基于MCADBO-SVM的刀具磨损状态监测方法。在传统蜣螂优化算法(DBO)算法基础上,引入Circle映射和自适应可变惯性权重,提出Circle自适应权重蜣螂优化(CADBO)算法,提升了算法的整体寻优和... 针对刀具磨损状态分类识别精度不高的问题,提出一种基于MCADBO-SVM的刀具磨损状态监测方法。在传统蜣螂优化算法(DBO)算法基础上,引入Circle映射和自适应可变惯性权重,提出Circle自适应权重蜣螂优化(CADBO)算法,提升了算法的整体寻优和收敛性能。引入多域完全特征提取和多重特征选择技术(MFST),并将CADBO用于支持向量机(SVM)中的核函数和惩罚因子的择优问题,建立了基于MCADBO-SVM的刀具磨损状态监测模型。在公开数据集PHM2010上进行实验,结果显示:与多种方法相比,此模型的综合性能最优,检测准确率达到了95.24%。 展开更多
关键词 刀具磨损监测模型 振动信号 蜣螂优化算法 支持向量机 特征降维
在线阅读 下载PDF
基于ICEEMDAN-PE和IDBO-Informer组合模型的短期负荷预测 被引量:1
15
作者 于多 曹燚 +2 位作者 王海荣 赵翱东 曹倩 《中国电力》 北大核心 2025年第6期19-32,共14页
针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置... 针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置换熵(permutation entropy,PE)和改进蜣螂优化算法(improved dung beetle optimizer,IDBO)-Informer的创新组合预测模型。首先,该模型通过小波软阈值去噪算法预处理原始负荷数据,减少噪声干扰。其次,利用ICEEMDAN多尺度分解负荷数据,精准捕捉负荷特征,并采用置换熵评估分量复杂度。最后,对蜣螂优化算法进行改进,通过融合混沌与逆向学习策略进行种群初始化,引入自适应步长与凸透镜逆成像策略及随机差异变异策略,优化Informer预测模型参数,显著提升预测效率与准确性。实验结果表明,该模型在短期负荷预测中表现出色,平均绝对误差为81.3 MW(原始负荷数据范围约为500 MW至1 500 MW),均方根误差为109.2 MW,拟合系数评分为0.991,远优于传统方法,充分验证了模型的创新性和优越性。 展开更多
关键词 负荷预测 ICEEMDAN 改进蜣螂优化算法 INFORMER
在线阅读 下载PDF
基于DBO-BP的永磁同步电机损耗预测模型 被引量:1
16
作者 李良辉 李乐 +1 位作者 王茜 张喜明 《现代制造工程》 北大核心 2025年第2期130-137,共8页
针对有限元法计算永磁同步电机损耗的实时性问题,提出了一种采用蜣螂优化(Dung Beetle Optimizer,DBO)算法优化BP神经网络的永磁同步电机损耗预测模型。以一台额定功率为40 kW的车用永磁同步电机为研究对象,首先,在有限元分析软件Maxwel... 针对有限元法计算永磁同步电机损耗的实时性问题,提出了一种采用蜣螂优化(Dung Beetle Optimizer,DBO)算法优化BP神经网络的永磁同步电机损耗预测模型。以一台额定功率为40 kW的车用永磁同步电机为研究对象,首先,在有限元分析软件Maxwell中建立了电机的电磁场损耗求解模型;其次,通过最佳空间填充试验设计方法,选取了600组控制参数组合(电枢电流、内功率因数角和转速)进行电机损耗求解,得到训练神经网络所需的数据集;最后,利用DBO算法对BP神经网络进行优化,构建了基于DBO-BP神经网络的永磁同步电机损耗预测模型,并与传统的BP神经网络、遗传算法优化的BP神经网络模型的预测效果进行对比。结果表明,DBO-BP神经网络预测模型在预测精度上优于其他2种神经网络模型,预测误差控制在5.86%以内,且计算速度是有限元模型的1267倍,能有效替代耗时较多的有限元模型,提高了损耗预测的实时性和准确性,为电机损耗预测提供了一种有效的方法。 展开更多
关键词 永磁同步电机 损耗预测 有限元分析 蜣螂优化算法 神经网络
在线阅读 下载PDF
基于DBO-RF的磁场辅助镁/铝异种金属激光焊工艺 被引量:1
17
作者 王新宇 周惦武 +2 位作者 赵蕾 邓乔 贺赵国 《焊接学报》 北大核心 2025年第2期72-79,共8页
为了探究磁场辅助镁/铝激光焊工艺参数和接头性能之间的关联性,并建立预测模型以指导工艺参数设计,采用试验设计方法,选取激光功率、焊接速度和磁场强度为变量,研究其对焊接接头性能的影响,并基于随机森林算法(RF)建立镁/铝对接接头的... 为了探究磁场辅助镁/铝激光焊工艺参数和接头性能之间的关联性,并建立预测模型以指导工艺参数设计,采用试验设计方法,选取激光功率、焊接速度和磁场强度为变量,研究其对焊接接头性能的影响,并基于随机森林算法(RF)建立镁/铝对接接头的预测模型,利用蜣螂算法(DBO)对模型的关键参数(树数和叶子数)进行优化.结果表明,当焊接形貌系数介于1.37~1.58时,接头性能较好;激光功率、焊接速度、磁场强度对接头性能的相对重要性分别为0.608,0.212和0.276;优化后的蜣螂优化随机森林模型(DBO-RF)在测试集上的决定系数R^(2)从0.742提升至0.950,模型的泛化能力、整体准确性和计算速度均显著提高,为磁场辅助激光焊接的工艺参数设计提供了依据. 展开更多
关键词 激光焊 镁/铝异种金属 外加磁场 蜣螂算法 随机森林
在线阅读 下载PDF
基于CEEMDAN-WTD-DBO的轴承振动信号降噪方法 被引量:1
18
作者 吴云飞 龙江 +1 位作者 魏友 曾信凌 《现代电子技术》 北大核心 2025年第6期91-98,共8页
针对高噪声环境下难以提取轴承故障频率特征的问题,提出一种结合完备集合经验模态分解(CEEMDAN)、小波阈值降噪(WTD)和蜣螂优化算法(DBO)的方法。使用CEEMDAN将信号分解成多个固有模态函数(IMFs),并根据综合评价指标对IMFs信号进行选取... 针对高噪声环境下难以提取轴承故障频率特征的问题,提出一种结合完备集合经验模态分解(CEEMDAN)、小波阈值降噪(WTD)和蜣螂优化算法(DBO)的方法。使用CEEMDAN将信号分解成多个固有模态函数(IMFs),并根据综合评价指标对IMFs信号进行选取;随后使用WTD对选取的信号进行降噪处理,使用DBO对改进的阈值函数的参数进行自适应选取,在有效减小噪声水平后进行信号重组。将重组信号进行包络谱分析,得出所提方法能有效地对信号进行降噪与故障特征提取。将该方法应用于滚动轴承的仿真信号和实际轴承数据,结果表明,基于参数优化的CEEMDAN-WTD-DBO方法相较于传统的单一降噪方法,在减少随机噪声与提取故障特征频率能力方面表现更出色。 展开更多
关键词 滚动轴承 振动信号 小波阈值降噪 模态分解 蜣螂优化算法 包络谱 故障特征提取
在线阅读 下载PDF
基于合作博弈策略和DBO-BiLSTM-Attention的电动汽车充电桩故障预测
19
作者 陈庆斌 杨耿煌 +2 位作者 耿丽清 苏娟 尚春虎 《电子测量与仪器学报》 北大核心 2025年第4期163-171,共9页
针对电动汽车充电桩故障率较高的问题,提出一种基于合作博弈策略和蜣螂优化算法-双向长短期记忆网络-注意力机制(DBO-BiLSTM-Attention)的电动汽车充电桩故障预测方法。首先,通过参数统计分布处理异常值,通过均值填充处理缺失值,对处理... 针对电动汽车充电桩故障率较高的问题,提出一种基于合作博弈策略和蜣螂优化算法-双向长短期记忆网络-注意力机制(DBO-BiLSTM-Attention)的电动汽车充电桩故障预测方法。首先,通过参数统计分布处理异常值,通过均值填充处理缺失值,对处理后的数据归一化操作;其次,从不同角度出发,选取主观评价方法层次分析法、客观评价方法CRITIC权重法和机器学习算法中的随机森林依次计算特征权重,采用合作博弈策略对上述特征权重进行组合,得到新特征权重,并对参数特征矩阵进行放大;然后,分别引入蜣螂优化算法和注意力机制,搭建DBO-BiLSTM-Attention模型,在仿真实验下,所提模型训练集和测试集的准确率、F1系数分别为0.89、0.89、0.90和0.90;最后,构建相关对比实验。结果表明,相比于不进行特征放大的模型,测试集准确率和F1系数分别提高了5%和6%;相比于不采用合作博弈策略的模型,测试集准确率和F1系数分别提高了2%和3%,验证所提模型的有效性和合理性。 展开更多
关键词 充电桩 合作博弈 蜣螂优化算法 双向长短期记忆网络 注意力机制
原文传递
基于VMD-DBO-BiGRU的多因素铁矿石期货价格预测
20
作者 刘福国 刘圆梦 +1 位作者 石玉峰 田茂再 《山东大学学报(理学版)》 北大核心 2025年第9期121-132,142,共13页
提出一种结合变分模态分解(variational mode decomposition,VMD)、蜣螂优化算法(dung beetle optimization,DBO)与双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的预测模型(VMD-DBO-BiGRU),旨在提升铁矿石期货价格预测... 提出一种结合变分模态分解(variational mode decomposition,VMD)、蜣螂优化算法(dung beetle optimization,DBO)与双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的预测模型(VMD-DBO-BiGRU),旨在提升铁矿石期货价格预测精度。首先,采用VMD方法对铁矿石期货价格序列进行模态分解,提取不同时间尺度的价格特征并抑制噪声干扰;其次,引入DBO算法优化BiGRU模型的超参数,避免传统优化方法易陷入局部最优的问题;最后,将优化后的BiGRU模型应用于各模态分量的预测,并根据预测结果线性重构得到最终的期货价格预测值。实证研究表明,本文模型在单步和多步预测中均显著提高了铁矿石价格的预测精度,并较基准模型展现出持续的预测性能优势,为山东某钢厂等相关企业在套期保值策略制定和投资决策分析中提供了技术支持,有助于降低市场风险并提高决策效率。 展开更多
关键词 铁矿石期货价格 变分模态分解 蜣螂优化算法 双向门控循环单元
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部