This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ...This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.展开更多
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th...This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation.展开更多
随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分...随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分分布对齐(distribution alignment with open set difference,DAOD)算法引入雷达调制方式识别领域,设计具体应用的技术方案,并针对DAOD算法所需参数依靠先验知识或者试探选取问题,利用蜣螂优化(dung beetle optimizer,DBO)算法进行参数优化。仿真结果表明:在单个雷达调制方式未知情形下,精确度Accuracy和F-measure分值的平均值分别可达91.34%和95.11%;在多个雷达调制方式未知情形下,Accuracy和F-measure的平均值分别可达91.37%、93.69%;与DAOD算法相比,上述结果分别提升了3.77%、1.83%、21.17%和12.06%。因此,DBO-DAOD算法可有效提升未知雷达调制方式的识别率。展开更多
针对现有基于深度学习的滚动轴承故障诊断方法存在准确度不高、泛化性较差的缺点,提出了一种基于SConvNeXt-ECMS(the ConvNeXt network based on shuffled convolution-efficient channel and multi-scale spatial attention module)与D...针对现有基于深度学习的滚动轴承故障诊断方法存在准确度不高、泛化性较差的缺点,提出了一种基于SConvNeXt-ECMS(the ConvNeXt network based on shuffled convolution-efficient channel and multi-scale spatial attention module)与DBO-RELM(dung beetleoptimizer regularized extreme learning machine)的滚动轴承故障诊断模型。将ECMS注意力机制与分流卷积模块融入ConvNeXt网络,提升ConvNeXt网络的特征提取能力;使用蜣螂优化算法完成参数寻优后的RELM替换网络原有分类层,提升网络对相近特征的分辨能力;利用哈尔滨工业大学航空轴承故障数据集仿真实验,验证所提分流卷积对ConvNeXt网络的提升效果;使用帕德博恩大学数据集进行滚动轴承混合故障诊断实验,验证所提SConvNeXt-ECMS与DBO-RELM模型的分类效果。仿真实验结果表明:所提SConvNeXt网络在航空轴承故障分类任务中,准确率可达100%,优于其他现有网络;帕德博恩大学滚动轴承混合故障诊断实验表明,所提ECMS注意力机制以及DBO-RELM方法均对原网络的性能有进一步的提升,新模型对滚动轴承混合故障的诊断准确率最高可达99.94%,相较于其他现有的滚动轴承故障诊断模型,均具有更高的故障诊断准确率和更强的泛化能力。展开更多
基金funded by the National Defense Science and Technology Innovation project,grant number ZZKY20223103the Basic Frontier InnovationProject at the Engineering University of PAP,grant number WJY202429+2 种基金the Basic Frontier lnnovation Project at the Engineering University of PAP,grant number WJY202408the Graduate Student Funding Priority Project,grant number JYWJ2024B006Key project of National Social Science Foundation,grant number 2023-SKJJ-A-116.
文摘This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.
基金supported by the Natural Science Foundation of China(62273068)the Fundamental Research Funds for the Central Universities(3132023512)Dalian Science and Technology Innovation Fund(2019J12GX040).
文摘This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation.
文摘随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分分布对齐(distribution alignment with open set difference,DAOD)算法引入雷达调制方式识别领域,设计具体应用的技术方案,并针对DAOD算法所需参数依靠先验知识或者试探选取问题,利用蜣螂优化(dung beetle optimizer,DBO)算法进行参数优化。仿真结果表明:在单个雷达调制方式未知情形下,精确度Accuracy和F-measure分值的平均值分别可达91.34%和95.11%;在多个雷达调制方式未知情形下,Accuracy和F-measure的平均值分别可达91.37%、93.69%;与DAOD算法相比,上述结果分别提升了3.77%、1.83%、21.17%和12.06%。因此,DBO-DAOD算法可有效提升未知雷达调制方式的识别率。