This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ...This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.展开更多
Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying t...Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying the actuator modeling and solving the difficulty of fault data collection.To solve the problem of real-time diagnosis of actuator faults in the 3-PR(P)S parallel robot,the model of 3-PR(P)S parallel robot and data-driven-based method for the fault diagnosis are presented.Firstly,only the input-output relationship of the actuator is considered for modeling actuator faults,reducing the complexity of fault modeling and reducing the time consumption of parameter identification,thereby meeting the requirements of real-time diagnosis.A Simulink model of the electromechanical actuator(EMA)was constructed to analyze actuator faults.Then the short-term analysis method was employed for collecting the sample data of the slider position on the test platform of the EMA system and feature extraction.Training samples for neural networks are obtained.Furthermore,we optimized the Back Propagation(BP)neural network using the Dung Beetle Optimization Algorithm(DBO),which effectively resolved the weights and thresholds of the BP neural network.Compared to BP and Particle Swarm Optimization(PSO)-BP,the DBO-BP has better convergence,convergence rate,and the best-classifying quality.So,the classification for the different actuator faults is obviously improved.Finally,a fault diagnosis system was designed for the actuator of the 3-PR(P)S parallel robot,and the experimental results demonstrate that this system can detect actuator faults within 0.1 seconds.This work also provides the technical support for the fault-tolerant control of the 3-PR(P)S Parallel robot.展开更多
A dynamic reconfiguration method for photovoltaic(PV)arrays based on an improved dung beetle algorithm(IDBO)to address the issue of PV array mismatch loss caused by partial shading conditions(PSCs)is proposed.To estab...A dynamic reconfiguration method for photovoltaic(PV)arrays based on an improved dung beetle algorithm(IDBO)to address the issue of PV array mismatch loss caused by partial shading conditions(PSCs)is proposed.To establish the output power-current(P-I)segmentation function for the total-cross-tied(TCT)PV array and the constraint function for the electrical switches,the IDBO algorithm was used to optimize both the P-I segmentation function and the electrical switch constraint function.IDBO is compared with algorithm-free reconfiguration and five other heuristic algorithms using two evaluation criteria:mismatch loss and power enhancement percentage,across six shading scenarios for 6x6 PV arrays.The irradiation distribution of PV arrays reconfigured by IDBO is also presented.The results show that IDBO effectively increases the output power of PV arrays and reduces mismatch loss.The output PV curves tend to exhibit a single peak,and the reconstruction results are superior to those obtained with the other methods.展开更多
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th...This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation.展开更多
Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn s...Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn stalks,and it is very important to determine its content in corn stalks.In this paper,the feasibility of near-infrared spectroscopy(NIRS)combined with chemometrics for rapid detection of hemicellulose content in corn stalks was studied.In order to improve the accuracy of NIRS detection,a new intelligent optimization algorithm,dung beetle optimizer(DBO),was applied to select characteristic wavelengths of NIRS.Its modeling performance was compared with that based on characteristic wavelength selection using genetic algorithm(GA)and binary particle swarm optimization(BPSO),and it was found that the characteristic wavelength selection performance of DBO was excellent,and the regression accuracy of hemicellulose quantitative detection model established by its preferred characteristic wavelengths was better than the above two intelligent optimization algorithms.展开更多
Power prediction has been critical in large-scale wind power grid connections.However,traditional wind power prediction methods have long suffered from problems,for instance low prediction accuracy and poor reliabilit...Power prediction has been critical in large-scale wind power grid connections.However,traditional wind power prediction methods have long suffered from problems,for instance low prediction accuracy and poor reliability.For this purpose,a hybrid prediction model(VMD-LSTM-Attention)has been proposed,which integrates the variational modal decomposition(VMD),the long short-term memory(LSTM),and the attention mechanism(Attention),and has been optimized by improved dung beetle optimization algorithm(IDBO).Firstly,the algorithm's performance has been significantly enhanced through the implementation of three key strategies,namely the elite group strategy of the Logistic-Tent map,the nonlinear adjustment factor,and the adaptive T-distribution disturbance mechanism.Subsequently,IDBO has been applied to optimize the important parameters of VMD(decomposition layers and penalty factors)to ensure the best decomposition signal is obtained;Furthermore,the IDBO has been deployed to optimize the three key hyper-parameters of the LSTM,thereby improving its learning capability.Finally,an Attention mechanism has been incorporated to adaptively weight temporal features,thus increasing the model's ability to focus on key information.Comprehensive simulation experiments have demonstrated that the proposed model achieves higher prediction accuracy compared with VMD-LSTM,VMD-LSTM-Attention,and traditional prediction methods,and quantitative indexes verify the efectiveness of the algorithmic improvement as well as the excellence and precision of the model in wind power prediction.展开更多
基金funded by the National Defense Science and Technology Innovation project,grant number ZZKY20223103the Basic Frontier InnovationProject at the Engineering University of PAP,grant number WJY202429+2 种基金the Basic Frontier lnnovation Project at the Engineering University of PAP,grant number WJY202408the Graduate Student Funding Priority Project,grant number JYWJ2024B006Key project of National Social Science Foundation,grant number 2023-SKJJ-A-116.
文摘This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.
文摘Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying the actuator modeling and solving the difficulty of fault data collection.To solve the problem of real-time diagnosis of actuator faults in the 3-PR(P)S parallel robot,the model of 3-PR(P)S parallel robot and data-driven-based method for the fault diagnosis are presented.Firstly,only the input-output relationship of the actuator is considered for modeling actuator faults,reducing the complexity of fault modeling and reducing the time consumption of parameter identification,thereby meeting the requirements of real-time diagnosis.A Simulink model of the electromechanical actuator(EMA)was constructed to analyze actuator faults.Then the short-term analysis method was employed for collecting the sample data of the slider position on the test platform of the EMA system and feature extraction.Training samples for neural networks are obtained.Furthermore,we optimized the Back Propagation(BP)neural network using the Dung Beetle Optimization Algorithm(DBO),which effectively resolved the weights and thresholds of the BP neural network.Compared to BP and Particle Swarm Optimization(PSO)-BP,the DBO-BP has better convergence,convergence rate,and the best-classifying quality.So,the classification for the different actuator faults is obviously improved.Finally,a fault diagnosis system was designed for the actuator of the 3-PR(P)S parallel robot,and the experimental results demonstrate that this system can detect actuator faults within 0.1 seconds.This work also provides the technical support for the fault-tolerant control of the 3-PR(P)S Parallel robot.
基金Supported by the National Natural Science Foundation of China(61903291)the Key R&D Project in Shaanxi Province(2022GY-134)+1 种基金the Open Fund Project of New Energy Joint Laboratory of China Southern Power Grid Corporation in 2022(GDXNY2022KF01)the China Southern Power Grid Laboratory Open Subject Fund Project(0304002022030103GD00037).
文摘A dynamic reconfiguration method for photovoltaic(PV)arrays based on an improved dung beetle algorithm(IDBO)to address the issue of PV array mismatch loss caused by partial shading conditions(PSCs)is proposed.To establish the output power-current(P-I)segmentation function for the total-cross-tied(TCT)PV array and the constraint function for the electrical switches,the IDBO algorithm was used to optimize both the P-I segmentation function and the electrical switch constraint function.IDBO is compared with algorithm-free reconfiguration and five other heuristic algorithms using two evaluation criteria:mismatch loss and power enhancement percentage,across six shading scenarios for 6x6 PV arrays.The irradiation distribution of PV arrays reconfigured by IDBO is also presented.The results show that IDBO effectively increases the output power of PV arrays and reduces mismatch loss.The output PV curves tend to exhibit a single peak,and the reconstruction results are superior to those obtained with the other methods.
基金supported by the Natural Science Foundation of China(62273068)the Fundamental Research Funds for the Central Universities(3132023512)Dalian Science and Technology Innovation Fund(2019J12GX040).
文摘This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation.
基金Supported by San Heng San Zong Project of Heilongjiang Bayi Agricultural University(ZRCPY202314).
文摘Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn stalks,and it is very important to determine its content in corn stalks.In this paper,the feasibility of near-infrared spectroscopy(NIRS)combined with chemometrics for rapid detection of hemicellulose content in corn stalks was studied.In order to improve the accuracy of NIRS detection,a new intelligent optimization algorithm,dung beetle optimizer(DBO),was applied to select characteristic wavelengths of NIRS.Its modeling performance was compared with that based on characteristic wavelength selection using genetic algorithm(GA)and binary particle swarm optimization(BPSO),and it was found that the characteristic wavelength selection performance of DBO was excellent,and the regression accuracy of hemicellulose quantitative detection model established by its preferred characteristic wavelengths was better than the above two intelligent optimization algorithms.
基金the Open Fund of Guangxi Key Laboratory of Building New Energy and Energy Saving(Project Number:Guike Energy 17-J-21-3).
文摘Power prediction has been critical in large-scale wind power grid connections.However,traditional wind power prediction methods have long suffered from problems,for instance low prediction accuracy and poor reliability.For this purpose,a hybrid prediction model(VMD-LSTM-Attention)has been proposed,which integrates the variational modal decomposition(VMD),the long short-term memory(LSTM),and the attention mechanism(Attention),and has been optimized by improved dung beetle optimization algorithm(IDBO).Firstly,the algorithm's performance has been significantly enhanced through the implementation of three key strategies,namely the elite group strategy of the Logistic-Tent map,the nonlinear adjustment factor,and the adaptive T-distribution disturbance mechanism.Subsequently,IDBO has been applied to optimize the important parameters of VMD(decomposition layers and penalty factors)to ensure the best decomposition signal is obtained;Furthermore,the IDBO has been deployed to optimize the three key hyper-parameters of the LSTM,thereby improving its learning capability.Finally,an Attention mechanism has been incorporated to adaptively weight temporal features,thus increasing the model's ability to focus on key information.Comprehensive simulation experiments have demonstrated that the proposed model achieves higher prediction accuracy compared with VMD-LSTM,VMD-LSTM-Attention,and traditional prediction methods,and quantitative indexes verify the efectiveness of the algorithmic improvement as well as the excellence and precision of the model in wind power prediction.