For the evaluation of structures with known ductility demands,the constant-ductility displacement ratio spectra(CDDRS) are particularly useful for providing inelastic displacement ratios to estimate maximum lateral in...For the evaluation of structures with known ductility demands,the constant-ductility displacement ratio spectra(CDDRS) are particularly useful for providing inelastic displacement ratios to estimate maximum lateral inelastic displacement demands from maximum elastic displacement demands.The CDDRS are computed for single-degree-of-freedom systems(SDOF) by considering or ignoring P-Δ effect for different ductility levels when subjected to 344 earthquake ground motions recorded in four site classes.The modified expressions of CDDRS for P-Δ effect are proposed.It is concluded that the P-Δ effect on CDDRS is significant,and the effect increases with the increase of ductility level.In the long-period region,the CDDRS ignoring P-Δ effect almost conforms to the equal-displacement rule.But in the case of higher ductility level,the CDDRS considering P-Δ effect are much higher than 1.0,which do not conform to the equal-displacement rule.展开更多
Crustal deformation shows different patterns at different depths due to changes in the physical properties of rock.Tectonic levels can be defined based on the geometry and deformation mechanisms of crustal deformation...Crustal deformation shows different patterns at different depths due to changes in the physical properties of rock.Tectonic levels can be defined based on the geometry and deformation mechanisms of crustal deformation patterns. Nujiang Gorge, with a high riverbed drop, great erosion depth, and strong deformation, has rock exposures at different tectonic levels and thus provides an ideal lab for deformation study. This paper takes the Nujiang Gorge from Chawalong to Fugong as the object to identify structural deformation patterns at different depths through field study and deformation analysis. At depth, the primary form of deformation is flow deformation, as shown on the outcrops at Maji. Ductile shear deformation can be found in many outcrops within the study region, e.g., the Gaoligong dextral shear zone and Puladi-Songta sinistral shear zone that lie to the south and north of Maji, respectively. Further to the north of Puladi, the dominated deformation pattern is similar fold and dense sub-vertical foliation. In addition, brittle faults, as evidence of shallow deformation, can be seen overprinting on the deeper deformation features all over the region. Based on those observations, this paper identifies four tectonic levels from depth to the surface: flow deformation, ductile shear deformation, similar fold, and brittle fault deformation, all of which result from the NEE-SWW compressive stress field. Further evidence from studies on the region′s thermal evolution and regional tectonics suggests that the development of different tectonic levels is closely linked to the discrepant uplift or denudation since the Miocene(~21 Ma).展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.90815014,50608024)Opening Laboratory of Earthquake Engineering and Engineering Vibration Foundation(Grant No.2007001)Opening Laboratory of Seismic Control and Structural Safety Foundation(Grant No.0808)
文摘For the evaluation of structures with known ductility demands,the constant-ductility displacement ratio spectra(CDDRS) are particularly useful for providing inelastic displacement ratios to estimate maximum lateral inelastic displacement demands from maximum elastic displacement demands.The CDDRS are computed for single-degree-of-freedom systems(SDOF) by considering or ignoring P-Δ effect for different ductility levels when subjected to 344 earthquake ground motions recorded in four site classes.The modified expressions of CDDRS for P-Δ effect are proposed.It is concluded that the P-Δ effect on CDDRS is significant,and the effect increases with the increase of ductility level.In the long-period region,the CDDRS ignoring P-Δ effect almost conforms to the equal-displacement rule.But in the case of higher ductility level,the CDDRS considering P-Δ effect are much higher than 1.0,which do not conform to the equal-displacement rule.
基金supported by the Project of the China Geological Survey (Grant No. 12120113013700)the Director Fund project of China Earthquake Disaster Prevention Center (Grant No. 201604)
文摘Crustal deformation shows different patterns at different depths due to changes in the physical properties of rock.Tectonic levels can be defined based on the geometry and deformation mechanisms of crustal deformation patterns. Nujiang Gorge, with a high riverbed drop, great erosion depth, and strong deformation, has rock exposures at different tectonic levels and thus provides an ideal lab for deformation study. This paper takes the Nujiang Gorge from Chawalong to Fugong as the object to identify structural deformation patterns at different depths through field study and deformation analysis. At depth, the primary form of deformation is flow deformation, as shown on the outcrops at Maji. Ductile shear deformation can be found in many outcrops within the study region, e.g., the Gaoligong dextral shear zone and Puladi-Songta sinistral shear zone that lie to the south and north of Maji, respectively. Further to the north of Puladi, the dominated deformation pattern is similar fold and dense sub-vertical foliation. In addition, brittle faults, as evidence of shallow deformation, can be seen overprinting on the deeper deformation features all over the region. Based on those observations, this paper identifies four tectonic levels from depth to the surface: flow deformation, ductile shear deformation, similar fold, and brittle fault deformation, all of which result from the NEE-SWW compressive stress field. Further evidence from studies on the region′s thermal evolution and regional tectonics suggests that the development of different tectonic levels is closely linked to the discrepant uplift or denudation since the Miocene(~21 Ma).