[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau...[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau damping,which is particularly important for storage rings operating with ultra-low emittance or atlow beam energy.[Purpose]To further increase the bunch length without additional hardware costs,the phasemodulation in a dual-RF system is considered.[Methods]In this paper,turn-by-turn simulations incorporating randomsynchrotron radiation excitation are conducted,and a brief analysis is presented to explain the bunch lengtheningmechanism.[Results]Simulation results reveal that the peak current can be further reduced,thereby mitigating IBSeffects and enhancing the Touschek lifetime.Although the energy spread increases,which tends to reduce thebrightness of higher-harmonic radiation from the undulator,the brightness of the fundamental harmonic can,in fact,beimproved.展开更多
Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchroniza...Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchronization method based on pulse-coupled oscillators(PCOs)provides an effective solution for clock synchronization in wireless networks.However,the existing clock synchronization algorithms in multi-agent ad hoc networks are difficult to meet the requirements of high precision and high stability of synchronization clock in group cooperation.Hence,this paper constructs a network model,named DAUNet(unsupervised neural network based on dual attention),to enhance clock synchronization accuracy in multi-agent wireless ad hoc networks.Specifically,we design an unsupervised distributed neural network framework as the backbone,building upon classical PCO-based synchronization methods.This framework resolves issues such as prolonged time synchronization message exchange between nodes,difficulties in centralized node coordination,and challenges in distributed training.Furthermore,we introduce a dual-attention mechanism as the core module of DAUNet.By integrating a Multi-Head Attention module and a Gated Attention module,the model significantly improves information extraction capabilities while reducing computational complexity,effectively mitigating synchronization inaccuracies and instability in multi-agent ad hoc networks.To evaluate the effectiveness of the proposed model,comparative experiments and ablation studies were conducted against classical methods and existing deep learning models.The research results show that,compared with the deep learning networks based on DASA and LSTM,DAUNet can reduce the mean normalized phase difference(NPD)by 1 to 2 orders of magnitude.Compared with the attention models based on additive attention and self-attention mechanisms,the performance of DAUNet has improved by more than ten times.This study demonstrates DAUNet’s potential in advancing multi-agent ad hoc networking technologies.展开更多
To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capabl...To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.展开更多
A series of dual-extended-polyhedral metal-organic frameworks(MOFs)was constructed based on the 14-coordinated Cu_(24)-MOP-1(MOP=metal-organic polyhedron)supermolecular building blocks(SBBs)with enhanced stability and...A series of dual-extended-polyhedral metal-organic frameworks(MOFs)was constructed based on the 14-coordinated Cu_(24)-MOP-1(MOP=metal-organic polyhedron)supermolecular building blocks(SBBs)with enhanced stability and tunable functionality for high water uptake efficiency and capacity.Exceptional water stability was demonstrated by the retention of chemical integrity and crystallinity of USC-CP-5(where USC-CP stands for University of South China coordination polymer)after exposure to boiling water for 24 h.Functionalization with-Cl,-OCH_(3),-OH,and-NH_(2)groups of USC-CP-5 resulted in water uptake capacities of 450,460,490,and 590 cm^(3)·g^(-1) at relative pressure(P/P_(0))=0.9,respectively.This performance is ascribed to both the increased hydrophilicity of the ligands and stronger hydrogen bonding.Intriguingly,high-temperature activated USC-5-NH_(2)exhibits a significant water uptake of 38.5 wt.%at P/P_(0)=0.3 and releases 0.44 L·kg^(-1) water between 25 and 65℃.This water release process is reversible for at least 100 cycles with minimal weight loss of only 1.6 wt.%.Consequently,USC-5-NH_(2)holds considerable potential for harvesting and releasing atmospheric water in arid desert regions,powered by solar energy.展开更多
Oxygen reduction reaction(ORR)is crucial for Znair batteries,while also serves as a core electrochemical process in oxygen depolarized cathodes(ODCs)for chlor-alkali electrolysis.The lack of cost-effective,highly acti...Oxygen reduction reaction(ORR)is crucial for Znair batteries,while also serves as a core electrochemical process in oxygen depolarized cathodes(ODCs)for chlor-alkali electrolysis.The lack of cost-effective,highly active ORR electrocatalysts with superior kinetics hinders progress in this field.Herein,we report the Fe/Ni dual single-atomic sites anchored by commercial carbon black(Fe/Ni-N/CB)using rigid ligand confined and high-temperature shock(HTS)strategy in less than 0.5 s.Theoretical calculation reveals that singleatomic Fe is the real active site.Single-atomic Fe and Ni species in Fe/Ni-N/CB synergistically accelerate the kinetics of ORR by reducing the energy barrier of the rate-determining step.A large half-wave potential(E_(1/2))of 0.907 V is achieved in 0.1 M KOH aqueous solution.The assembled aqueous Zn-air battery(A-ZAB)with Fe/Ni-N/CB cathode presents remarkable charge-discharge cycling stability for over 650 h without voltage gap degradation.The quasi-solid-state Zn-air battery(QSS-ZAB)exhibits excellent reversibility over a 150-h operation at 0.5 mA·cm^(-2) with negligible energy conversion efficiency recession.Impressively,Fe/Ni-N/CB||RuO_(2)chloralkali flow cell exhibits a low cell voltage of 1.60 V at a large current density of 300 mA·cm^(-2) at 80℃,and demonstrates exceptional durability with 7% current density decay over 150 h of continuous operation at 100 mA·cm^(-2).Fe/Ni-N/CB||RuO_(2)achieves near-ideal caustic current efficiency(~97.2%)at the current density of 300 mA·cm^(-2).This work provides a rapid and economical synthesis technique for the synthesis of catalysts at the atomic scale while demonstrating significant potential for application in energy-saving chlor-alkali electrolyzer.展开更多
Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacte...Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacterales have been increasingly reported in children,with higher rates in Asian and Middle Eastern settings than in high-income countries[1,2].展开更多
In this paper,we first establish the dual Brunn-Minkowski inequality for the star duals for the Lp radial sum.Furthermore,we give some Brunn-Minkowski inequalities for the star duals of intersection bodies for the Lp ...In this paper,we first establish the dual Brunn-Minkowski inequality for the star duals for the Lp radial sum.Furthermore,we give some Brunn-Minkowski inequalities for the star duals of intersection bodies for the Lp radial sum and the Lp harmonic Blaschke sum.展开更多
The main result of this paper is the identification of the sequential order dual [∧(X)]so containing sequentially order continuous linear functionals on the ordered generalized sequence space ∧(X) with its generaliz...The main result of this paper is the identification of the sequential order dual [∧(X)]so containing sequentially order continuous linear functionals on the ordered generalized sequence space ∧(X) with its generalized Kothe dual ∧x(Xso), defined corresponding to the dual pair <X, Xso>.展开更多
This paper is concerned with the characterization of the duals of wavelet frames of L(2)(R).The sufficient and necessary conditions for them are obtained.
BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and ...BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and amoxicillin(VA)dual therapy in the general population,there is still a lack of studies specifically focusing on its safety in elderly patients.AIM To evaluate efficacy and safety of VA dual therapy as first-line or rescue treatment for H.pylori in elderly patients.METHODS As a real-world retrospective study,data were collected from elderly patients aged 60 years and above who accepted VA dual therapy(vonoprazan 20 mg twice daily+amoxicillin 1000 mg thrice daily for 14 days)for H.pylori eradication in the Department of Gastroenterology at Peking University First Hospital between June 2020 and January 2024.H.pylori status was evaluated by^(13)C-urease breath test 6 weeks after treatment.All adverse events(AEs)during treatment were recorded.RESULTS In total,401 cases were screened.Twenty-one cases were excluded due to loss to follow-up,lack of re-examination,or unwillingness to take medication.The total of 380 included cases comprised 250 who received VA dual therapy as first-line treatment and 130 who received VA dual therapy as rescue treatment.H.pylori was successfully eradicated in 239 cases(95.6%)in the first-line treatment group and 116 cases(89.2%)in the rescue treatment group.The overall incidence of AEs was 9.5%for both groups.Specifically,9.2%of patients experienced an AE in the first-line treatment group and 10.0%in the rescue treatment group.Five patients discontinued treatment due to AE,with a discontinuation rate of 1.3%.No serious AE occurred.CONCLUSION The VA dual therapy regimen as a first-line treatment and a rescue therapy was effective and safe for elderly patients aged 60 and older.展开更多
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka...The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.展开更多
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el...Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.展开更多
Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstra...Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range.展开更多
The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are...The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are required in the process of plant supplementing light,arrow-band emitting phosphors are applied to backlight displays,etc.In this work,a Bi^(3+)-activated blue phosphor was obtained in a symmetrical and co mpact crystal structure of Gd3Sb07(GSO).Then,the co-doping strategy of alkali metal ions(Li^(+),Na^(+),and K^(+))was used to optimize the performance.The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li~+and K^(+)ions.Not only that,it also achieves narrow-band emitting with the full width of half-maximum(FWHM)reaching 42 nm through Na^(+)doping,and its excitation peak position also shifts from 322 to 375 nm,which can be well excited by near-ultraviolet(NUV)light emitting diode(LED)chips(365 nm).Meanwhile,the electroluminescence spectrum of GSO:0.6 mol%Bi^(3+),3 wt%Na^(+)matches up to 93.39%of the blue part of the absorption spectrum of chlorophyll a.In summary,the Bi^(3+)-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays.展开更多
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl...Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.展开更多
The recently developed SCCDS composite tube,a novel variant of the pipe-in-pipe(PIP)structure,demonstrates strong potential for subsea pipeline applications.However,theoretical research regarding its structural behavi...The recently developed SCCDS composite tube,a novel variant of the pipe-in-pipe(PIP)structure,demonstrates strong potential for subsea pipeline applications.However,theoretical research regarding its structural behavior under compression-torsion loading and bearing capacity calculations remains limited,particularly concerning the influence of dual hydraulic pressures during operation.This study examines the impact of dual hydraulic pressures on the compressive-torsional behavior of SCCDS composite tubes.A finite element(FE)model was developed and validated against experimental results,comparing failure modes,full-range loading curves,and bearing capacity to elucidate the working mechanism under dual pressures.A parametric study was then conducted to examine the effects of geometric-physical parameters.Results demonstrate that dual pressures substantially enhance the bearing capacity of sandwich concrete by increasing the normal contact stress at the interface.Increasing concrete strength(f_(c))provides minimal enhancement to torsional resistance compared to the yielding strengths of outer tube(f_(yo))and inner tube(f_(yi)).Higher diameter-to-thickness ratios of outer tube(D_(o)/t_(o))and inner tube(D_(i)/t_(i))significantly reduce torsional capacity.At 1000 m water depth,increasing the D_(o)/t_(o)ratio from 27.5 to 36.67,55,and 110 reduces bearing capacity by 11.17%,23.08%,and 36.14%respectively.Strict measures should be implemented to prevent substantial reductions in strength and ductility for SCCDS composite tubes with large hollow ratios(e.g.,χ=0.849)or high axial compression ratios(e.g.,n=0.8).The study proposes a modified calculation method for determining N-T curves that incorporates dual hydraulic pressure effects,providing guidance for performance evaluation of novel SCCDS composite tubes in deep-sea engineering.展开更多
Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coa...Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coatings delays endothelial tissue repair,thus leading to late stent thrombosis.To address these issues,a dual self-healed coating with various biological properties was fabricated on magnesium fluoride/polydopamine(MgF_(2)/PDA)-treated Mg alloys by spraying-assisted layer-by-layer(LBL)self-assembly of chitosan(CS),gallic acid(GA),and 3-aminobenzeneboronic acid-modified hyaluronic acid(HA-ABBA).The LBL coating,approximately 1.50μm thick,exhibited a uniform morphology with good adhesion strength(~1065 mN).The annual corrosion rate(Pi)of LBL samples was~1400 times slower than that of the Mg substrate,due to the physical barrier function provided by MgF_(2)/PDA layers and the dual self-healed ability of LBL layers.The rapid self-healing ability(with a healing period of~4 h under dynamic/static conditions)resulted from the synergistic interplay between the recombination of diverse chemical bonds within the LBL coating and the coordination of LBL-released GA with Mg2+,as corroborated by computer simulations.Compared with the drug-eluting coatings,the LBL sample demonstrated substantial advantages in anti-oxidation,anti-denaturation of fibrinogen,anti-platelet adhesion,anti-inflammation,anti-hyperplasia,and promoted-endothelialization.These benefits effectively address the limitations associated with drug-eluting coatings.展开更多
Herein,we report the self-sacrificial template strategy to design mesoporous layered CeVWO_(x)/TiO_(2)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).As-fabricated CeVWO_(x)/TiO_(2)catalyst...Herein,we report the self-sacrificial template strategy to design mesoporous layered CeVWO_(x)/TiO_(2)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).As-fabricated CeVWO_(x)/TiO_(2)catalysts with unique mesoporous and layered structure were successfully prepared through the synthesis of Ce,Ti-MOFs by solvothermal method,the impregnation of vanadium and tungsten in Ce,Ti-MOFs and high temperature calcination process.As NH_(3)-SCR catalysts,well-designed CeVWO_(x)/TiO_(2)catalysts exhibit excellent SCR activity with the NO_(x)conversion of over 90%between 210 and 470℃.Meanwhile,CeVWO_(x)/TiO_(2)shows superior tolerance to water vapor and SO_(2).The features of unique mesoporous layered nanostructure,surface acidity,tunable reducibility,active and the strong interaction of active metal oxide and support in CeVWO_(x)/TiO_(2)nanosheets should contribute to the improved SCR performance.In situ diffuse reflection infrared Fourier transform spectroscopy(DRIFTS)analysis indicates that both Langmuir-Hinshelwood(L-H)and Eley-Rideal(E-R)mechanisms are present on the surface of CeVWO_(x)/TiO_(2)at low temperature.This work offers a facile strategy to design and fabricate efficient 2D deNO_x catalyst.展开更多
基金National Natural Science Foundation of China(12405168)The Fundamental Research Funds for the Central Universities,China(2024CDJXY004)。
文摘[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau damping,which is particularly important for storage rings operating with ultra-low emittance or atlow beam energy.[Purpose]To further increase the bunch length without additional hardware costs,the phasemodulation in a dual-RF system is considered.[Methods]In this paper,turn-by-turn simulations incorporating randomsynchrotron radiation excitation are conducted,and a brief analysis is presented to explain the bunch lengtheningmechanism.[Results]Simulation results reveal that the peak current can be further reduced,thereby mitigating IBSeffects and enhancing the Touschek lifetime.Although the energy spread increases,which tends to reduce thebrightness of higher-harmonic radiation from the undulator,the brightness of the fundamental harmonic can,in fact,beimproved.
文摘Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchronization method based on pulse-coupled oscillators(PCOs)provides an effective solution for clock synchronization in wireless networks.However,the existing clock synchronization algorithms in multi-agent ad hoc networks are difficult to meet the requirements of high precision and high stability of synchronization clock in group cooperation.Hence,this paper constructs a network model,named DAUNet(unsupervised neural network based on dual attention),to enhance clock synchronization accuracy in multi-agent wireless ad hoc networks.Specifically,we design an unsupervised distributed neural network framework as the backbone,building upon classical PCO-based synchronization methods.This framework resolves issues such as prolonged time synchronization message exchange between nodes,difficulties in centralized node coordination,and challenges in distributed training.Furthermore,we introduce a dual-attention mechanism as the core module of DAUNet.By integrating a Multi-Head Attention module and a Gated Attention module,the model significantly improves information extraction capabilities while reducing computational complexity,effectively mitigating synchronization inaccuracies and instability in multi-agent ad hoc networks.To evaluate the effectiveness of the proposed model,comparative experiments and ablation studies were conducted against classical methods and existing deep learning models.The research results show that,compared with the deep learning networks based on DASA and LSTM,DAUNet can reduce the mean normalized phase difference(NPD)by 1 to 2 orders of magnitude.Compared with the attention models based on additive attention and self-attention mechanisms,the performance of DAUNet has improved by more than ten times.This study demonstrates DAUNet’s potential in advancing multi-agent ad hoc networking technologies.
基金funded by the Science and Technology Projects of State Grid Corporation of China(Project No.J2024136).
文摘To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.
基金supported by the National Natural Science Foundation of China(Nos.11375082,22271189,12405385,92356301,and 21522105)the Hunan Provincial Natural Science Foundation of China(No.2021JJ30565)+5 种基金the Science and Technology Commission of Shanghai Municipality(Nos.21XD1402300,21JC1401700,and 21DZ2260400)the supports by the Double First-Class Initiative Fund of ShanghaiTech University(No.SYLDX0052022)the Analytical Instrumentation Center(No.SPST-AIC10112914)for adsorption measurementthe staff at BL17B1 beamline of the National Facility for Protein Science in Shanghai(NFPS),Shanghai Advanced Research Institute,CAS,for providing beamtime for single-crystal X-ray diffraction data collectionthe project CICECO-Aveiro Institute of Materials,Grants(Nos.UIDB/50011/2020,UIDP/50011/2020,and LA/P/0006/2020)financed by national funds through the FCT/MEC(PIDDAC).
文摘A series of dual-extended-polyhedral metal-organic frameworks(MOFs)was constructed based on the 14-coordinated Cu_(24)-MOP-1(MOP=metal-organic polyhedron)supermolecular building blocks(SBBs)with enhanced stability and tunable functionality for high water uptake efficiency and capacity.Exceptional water stability was demonstrated by the retention of chemical integrity and crystallinity of USC-CP-5(where USC-CP stands for University of South China coordination polymer)after exposure to boiling water for 24 h.Functionalization with-Cl,-OCH_(3),-OH,and-NH_(2)groups of USC-CP-5 resulted in water uptake capacities of 450,460,490,and 590 cm^(3)·g^(-1) at relative pressure(P/P_(0))=0.9,respectively.This performance is ascribed to both the increased hydrophilicity of the ligands and stronger hydrogen bonding.Intriguingly,high-temperature activated USC-5-NH_(2)exhibits a significant water uptake of 38.5 wt.%at P/P_(0)=0.3 and releases 0.44 L·kg^(-1) water between 25 and 65℃.This water release process is reversible for at least 100 cycles with minimal weight loss of only 1.6 wt.%.Consequently,USC-5-NH_(2)holds considerable potential for harvesting and releasing atmospheric water in arid desert regions,powered by solar energy.
基金supported financially by the National Natural Science Foundation of China(No.52172208)Taishan Scholar Young Talent Program(No.tsqn202306216)Shandong Excellent Young Scientists Fund Program(Overseas,2023HWYQ‑091).
文摘Oxygen reduction reaction(ORR)is crucial for Znair batteries,while also serves as a core electrochemical process in oxygen depolarized cathodes(ODCs)for chlor-alkali electrolysis.The lack of cost-effective,highly active ORR electrocatalysts with superior kinetics hinders progress in this field.Herein,we report the Fe/Ni dual single-atomic sites anchored by commercial carbon black(Fe/Ni-N/CB)using rigid ligand confined and high-temperature shock(HTS)strategy in less than 0.5 s.Theoretical calculation reveals that singleatomic Fe is the real active site.Single-atomic Fe and Ni species in Fe/Ni-N/CB synergistically accelerate the kinetics of ORR by reducing the energy barrier of the rate-determining step.A large half-wave potential(E_(1/2))of 0.907 V is achieved in 0.1 M KOH aqueous solution.The assembled aqueous Zn-air battery(A-ZAB)with Fe/Ni-N/CB cathode presents remarkable charge-discharge cycling stability for over 650 h without voltage gap degradation.The quasi-solid-state Zn-air battery(QSS-ZAB)exhibits excellent reversibility over a 150-h operation at 0.5 mA·cm^(-2) with negligible energy conversion efficiency recession.Impressively,Fe/Ni-N/CB||RuO_(2)chloralkali flow cell exhibits a low cell voltage of 1.60 V at a large current density of 300 mA·cm^(-2) at 80℃,and demonstrates exceptional durability with 7% current density decay over 150 h of continuous operation at 100 mA·cm^(-2).Fe/Ni-N/CB||RuO_(2)achieves near-ideal caustic current efficiency(~97.2%)at the current density of 300 mA·cm^(-2).This work provides a rapid and economical synthesis technique for the synthesis of catalysts at the atomic scale while demonstrating significant potential for application in energy-saving chlor-alkali electrolyzer.
文摘Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacterales have been increasingly reported in children,with higher rates in Asian and Middle Eastern settings than in high-income countries[1,2].
基金Project supported by the National Natural Science Foundation of China (Grant No.10671119)the Shanghai Leading Academic Discipline Project (Grant No.J50101)the Shanghai University Graduate Innovation Foundation Project (GrantNo.SHUCX092003)
文摘In this paper,we first establish the dual Brunn-Minkowski inequality for the star duals for the Lp radial sum.Furthermore,we give some Brunn-Minkowski inequalities for the star duals of intersection bodies for the Lp radial sum and the Lp harmonic Blaschke sum.
文摘The main result of this paper is the identification of the sequential order dual [∧(X)]so containing sequentially order continuous linear functionals on the ordered generalized sequence space ∧(X) with its generalized Kothe dual ∧x(Xso), defined corresponding to the dual pair <X, Xso>.
文摘This paper is concerned with the characterization of the duals of wavelet frames of L(2)(R).The sufficient and necessary conditions for them are obtained.
基金Supported by National High Level Hospital Clinical Research Funding(Youth Clinical Research Project of Peking University First Hospital),No.2023YC27Capital’s Funds for Health Improvement and Research,No.2022-2-40711National High Level Hospital Clinical Research Funding(Interdepartmental Research Project of Peking University First Hospital),No.2024IR20.
文摘BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and amoxicillin(VA)dual therapy in the general population,there is still a lack of studies specifically focusing on its safety in elderly patients.AIM To evaluate efficacy and safety of VA dual therapy as first-line or rescue treatment for H.pylori in elderly patients.METHODS As a real-world retrospective study,data were collected from elderly patients aged 60 years and above who accepted VA dual therapy(vonoprazan 20 mg twice daily+amoxicillin 1000 mg thrice daily for 14 days)for H.pylori eradication in the Department of Gastroenterology at Peking University First Hospital between June 2020 and January 2024.H.pylori status was evaluated by^(13)C-urease breath test 6 weeks after treatment.All adverse events(AEs)during treatment were recorded.RESULTS In total,401 cases were screened.Twenty-one cases were excluded due to loss to follow-up,lack of re-examination,or unwillingness to take medication.The total of 380 included cases comprised 250 who received VA dual therapy as first-line treatment and 130 who received VA dual therapy as rescue treatment.H.pylori was successfully eradicated in 239 cases(95.6%)in the first-line treatment group and 116 cases(89.2%)in the rescue treatment group.The overall incidence of AEs was 9.5%for both groups.Specifically,9.2%of patients experienced an AE in the first-line treatment group and 10.0%in the rescue treatment group.Five patients discontinued treatment due to AE,with a discontinuation rate of 1.3%.No serious AE occurred.CONCLUSION The VA dual therapy regimen as a first-line treatment and a rescue therapy was effective and safe for elderly patients aged 60 and older.
基金financially supported by the project of the National Natural Science Foundation of China(52322203)the Key Research and Development Program of Shaanxi Province(2024GHZDXM-21)。
文摘The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
基金supported by the National Key Research and Development Program of China(2022YFC3205300)the National Natural Science Foundation of China(22176124).
文摘Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.
基金supported by the Tianjin Science and Technology Plan Project(No.22JCQNJC01280)the Central Funds Guiding the Local Science and Technology Development of Hebei Province(Nos.226Z1001G and 226Z1012G)+1 种基金the National Natural Science Foundation of China(No.52002109,52071124)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range.
基金Project supported by the Key R&D Projects in Hunan Province(2021SK2047,2022NK2044)Science and Technology Innovation Program of Hunan Province(2022WZ1022)Superior Youth Project of the Science Research Project of Hunan Provincial Department of Education(22B0211)。
文摘The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are required in the process of plant supplementing light,arrow-band emitting phosphors are applied to backlight displays,etc.In this work,a Bi^(3+)-activated blue phosphor was obtained in a symmetrical and co mpact crystal structure of Gd3Sb07(GSO).Then,the co-doping strategy of alkali metal ions(Li^(+),Na^(+),and K^(+))was used to optimize the performance.The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li~+and K^(+)ions.Not only that,it also achieves narrow-band emitting with the full width of half-maximum(FWHM)reaching 42 nm through Na^(+)doping,and its excitation peak position also shifts from 322 to 375 nm,which can be well excited by near-ultraviolet(NUV)light emitting diode(LED)chips(365 nm).Meanwhile,the electroluminescence spectrum of GSO:0.6 mol%Bi^(3+),3 wt%Na^(+)matches up to 93.39%of the blue part of the absorption spectrum of chlorophyll a.In summary,the Bi^(3+)-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays.
基金funded by the Research Project:THTETN.05/24-25,VietnamAcademy of Science and Technology.
文摘Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.
基金supported by the High-level Talent Research Startup Fund(Grant No.1608722024)of Xi’an University of Archit-ectureTechnology and the Shaanxi Province High-level Youth Talents Program(Grant No.Z20240589).
文摘The recently developed SCCDS composite tube,a novel variant of the pipe-in-pipe(PIP)structure,demonstrates strong potential for subsea pipeline applications.However,theoretical research regarding its structural behavior under compression-torsion loading and bearing capacity calculations remains limited,particularly concerning the influence of dual hydraulic pressures during operation.This study examines the impact of dual hydraulic pressures on the compressive-torsional behavior of SCCDS composite tubes.A finite element(FE)model was developed and validated against experimental results,comparing failure modes,full-range loading curves,and bearing capacity to elucidate the working mechanism under dual pressures.A parametric study was then conducted to examine the effects of geometric-physical parameters.Results demonstrate that dual pressures substantially enhance the bearing capacity of sandwich concrete by increasing the normal contact stress at the interface.Increasing concrete strength(f_(c))provides minimal enhancement to torsional resistance compared to the yielding strengths of outer tube(f_(yo))and inner tube(f_(yi)).Higher diameter-to-thickness ratios of outer tube(D_(o)/t_(o))and inner tube(D_(i)/t_(i))significantly reduce torsional capacity.At 1000 m water depth,increasing the D_(o)/t_(o)ratio from 27.5 to 36.67,55,and 110 reduces bearing capacity by 11.17%,23.08%,and 36.14%respectively.Strict measures should be implemented to prevent substantial reductions in strength and ductility for SCCDS composite tubes with large hollow ratios(e.g.,χ=0.849)or high axial compression ratios(e.g.,n=0.8).The study proposes a modified calculation method for determining N-T curves that incorporates dual hydraulic pressure effects,providing guidance for performance evaluation of novel SCCDS composite tubes in deep-sea engineering.
基金supported by the National Key Research and Development Program of China(No.2021YFC2400703)the Key Scientific and Technological Research Projects in Henan Province(Nos.232102311155 and 232102230106)Zhengzhou University Major Project Cultivation Special Project(No.125-32214076).
文摘Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coatings delays endothelial tissue repair,thus leading to late stent thrombosis.To address these issues,a dual self-healed coating with various biological properties was fabricated on magnesium fluoride/polydopamine(MgF_(2)/PDA)-treated Mg alloys by spraying-assisted layer-by-layer(LBL)self-assembly of chitosan(CS),gallic acid(GA),and 3-aminobenzeneboronic acid-modified hyaluronic acid(HA-ABBA).The LBL coating,approximately 1.50μm thick,exhibited a uniform morphology with good adhesion strength(~1065 mN).The annual corrosion rate(Pi)of LBL samples was~1400 times slower than that of the Mg substrate,due to the physical barrier function provided by MgF_(2)/PDA layers and the dual self-healed ability of LBL layers.The rapid self-healing ability(with a healing period of~4 h under dynamic/static conditions)resulted from the synergistic interplay between the recombination of diverse chemical bonds within the LBL coating and the coordination of LBL-released GA with Mg2+,as corroborated by computer simulations.Compared with the drug-eluting coatings,the LBL sample demonstrated substantial advantages in anti-oxidation,anti-denaturation of fibrinogen,anti-platelet adhesion,anti-inflammation,anti-hyperplasia,and promoted-endothelialization.These benefits effectively address the limitations associated with drug-eluting coatings.
基金Project supported by National Key Research and Development Plan of China(2021YFB3802003,2022YFB3504102)the Key Research and Development Plan of Jiangsu Province(Social Development,BE2021713)+1 种基金the Six Talent Peaks Project of Jiangsu Province(JNHB-044)the Natural Science Foundation of Jiangsu Province of China(BK20160982)。
文摘Herein,we report the self-sacrificial template strategy to design mesoporous layered CeVWO_(x)/TiO_(2)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).As-fabricated CeVWO_(x)/TiO_(2)catalysts with unique mesoporous and layered structure were successfully prepared through the synthesis of Ce,Ti-MOFs by solvothermal method,the impregnation of vanadium and tungsten in Ce,Ti-MOFs and high temperature calcination process.As NH_(3)-SCR catalysts,well-designed CeVWO_(x)/TiO_(2)catalysts exhibit excellent SCR activity with the NO_(x)conversion of over 90%between 210 and 470℃.Meanwhile,CeVWO_(x)/TiO_(2)shows superior tolerance to water vapor and SO_(2).The features of unique mesoporous layered nanostructure,surface acidity,tunable reducibility,active and the strong interaction of active metal oxide and support in CeVWO_(x)/TiO_(2)nanosheets should contribute to the improved SCR performance.In situ diffuse reflection infrared Fourier transform spectroscopy(DRIFTS)analysis indicates that both Langmuir-Hinshelwood(L-H)and Eley-Rideal(E-R)mechanisms are present on the surface of CeVWO_(x)/TiO_(2)at low temperature.This work offers a facile strategy to design and fabricate efficient 2D deNO_x catalyst.