期刊文献+
共找到43,512篇文章
< 1 2 250 >
每页显示 20 50 100
Regional Storm Surge Forecast Method Based on a Neural Network and the Coupled ADCIRC-SWAN Model 被引量:1
1
作者 Yuan SUN Po HU +2 位作者 Shuiqing LI Dongxue MO Yijun HOU 《Advances in Atmospheric Sciences》 2025年第1期129-145,共17页
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ... Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning. 展开更多
关键词 regional storm surge forecast coupled ADCIRC-SWAN model neural network Res-U-Net structure
在线阅读 下载PDF
Global Piecewise Analysis of HIV Model with Bi-Infectious Categories under Ordinary Derivative and Non-Singular Operator with Neural Network Approach
2
作者 Ghaliah Alhamzi Badr Saad TAlkahtani +1 位作者 Ravi Shanker Dubey Mati ur Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期609-633,共25页
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i... This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately. 展开更多
关键词 HIV infection model qualitative scheme approximate solution piecewise global operator neural network
在线阅读 下载PDF
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
3
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
在线阅读 下载PDF
Genome-scale metabolic network model-guided genetic modification of Escherichia coli for pyruvate accumulation
4
作者 LI Xuefei GUO Chaohao +4 位作者 TONG Wenyue YANG Sen LIU Xiaoyun LI Jingchen KANG Ming 《微生物学报》 北大核心 2025年第10期4374-4391,共18页
[Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a... [Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a guide,we simulated pyruvate production of E.coli,screened key genes in metabolic pathways,and developed gene editing procedures accordingly.We knocked out the acetate kinase gene ackA,phosphate acetyltransferase gene pta,alcohol dehydrogenase adhE,glycogen synthase gene glgA,glycogen phosphorylase gene glgP,phosphoribosyl pyrophosphate(PRPP)synthase gene prs,ribose 1,5-bisphosphate phosphokinase gene phnN,and transporter encoding gene proP.Furthermore,we knocked in the transporter encoding gene ompC,flavonoid toxin gene fldA,and D-serine ammonia lyase gene dsdA.[Results]A shake flask process with the genetically edited mutant strain MG1655-6-2 under anaerobic conditions produced pyruvate at a titer of 10.46 g/L and a yield of 0.69 g/g.Metabolomic analysis revealed a significant increase in the pyruvate level in the fermentation broth,accompanied by notable decreases in the levels of certain related metabolic byproducts.Through 5 L fed-batch fermentation and an adaptive laboratory evolution,the strain finally achieved a pyruvate titer of 45.86 g/L.[Conclusion]This study illustrated the efficacy of a gene editing strategy predicted by a genome-scale metabolic network model in enhancing pyruvate accumulation in E.coli under anaerobic conditions and provided novel insights for microbial metabolic engineering. 展开更多
关键词 Escherichia coli PYRUVATE genome-scale metabolic network model CRISPR-Cas9 adaptive laboratory evolution
原文传递
A method for modeling and evaluating the interoperability of multi-agent systems based on hierarchical weighted networks
5
作者 DONG Jingwei TANG Wei YU Minggang 《Journal of Systems Engineering and Electronics》 2025年第3期754-767,共14页
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight... Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies. 展开更多
关键词 complex network agent INTEROPERABILITY susceptible-infected-recovered model dynamic Bayesian network
在线阅读 下载PDF
Data Gathering Based on Hybrid Energy Efficient Clustering Algorithm and DCRNN Model in Wireless Sensor Network
6
作者 Li Cuiran Liu Shuqi +1 位作者 Xie Jianli Liu Li 《China Communications》 2025年第3期115-131,共17页
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu... In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay. 展开更多
关键词 CLUSTERING data gathering DCRNN model network lifetime wireless sensor network
在线阅读 下载PDF
Wireless Sensor Network Modeling and Analysis for Attack Detection
7
作者 Tamara Zhukabayeva Vasily Desnitsky Assel Abdildayeva 《Computer Modeling in Engineering & Sciences》 2025年第8期2591-2625,共35页
Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smar... Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios. 展开更多
关键词 Wireless sensor network modelING SECURITY ATTACK DETECTION MONITORING
在线阅读 下载PDF
A non-affine constitutive model for the extremely large deformation of hydrogel polymer network based on network modeling method
8
作者 Jincheng Lei Yuan Gao +1 位作者 Danyang Wang Zishun Liu 《Acta Mechanica Sinica》 2025年第7期69-80,共12页
Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polym... Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well. 展开更多
关键词 Non-affine deformation Periodic random network model Large deformation Constitutive model
原文传递
In situ loading of a pore network model for quantitative characterization and visualization of gas seepage in coal rocks
9
作者 Huazhe Jiao Xi Chen +4 位作者 Tiegang Zhang Quilligan Michael Yixuan Yang Xiaolin Yang Tongyi Yang 《Deep Underground Science and Engineering》 2025年第3期437-451,共15页
The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal ... The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells. 展开更多
关键词 coalbed methane fractal dimension FRACTURE pore network model SEEPAGE
原文传递
An Intelligent Control Method Based on the Artificial Neural Network Model
10
作者 Liangkai Zhou Dan Han +1 位作者 Qinzhe Wang Nv Yang 《Journal of Electronic Research and Application》 2025年第5期299-303,共5页
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system... The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption. 展开更多
关键词 Artificial neural network model Control method Optimization scheme
在线阅读 下载PDF
Modeling of Flapping Wing Aerial Vehicle Using Hybrid Phase-functioned Neural Network Based on Flight Data
11
作者 Zhihao Zhao Zhiling Jiang +1 位作者 Chenyang Zhang Guanghua Song 《Journal of Bionic Engineering》 2025年第3期1126-1142,共17页
Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping win... Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles. 展开更多
关键词 Flapping wing aerial vehicle Flapping phase modeling Neural networks
在线阅读 下载PDF
Fixed Neural Network Image Steganography Based on Secure Diffusion Models
12
作者 Yixin Tang Minqing Zhang +2 位作者 Peizheng Lai Ya Yue Fuqiang Di 《Computers, Materials & Continua》 2025年第9期5733-5750,共18页
Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deplo... Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deployment.Diffusion model-based methods face security vulnerabilities,particularly due to potential information leakage during generation.We propose a fixed neural network image steganography framework based on secure diffu-sion models to address these challenges.Unlike conventional approaches,our method minimizes cover modifications through neural network optimization,achieving superior steganographic performance in human visual perception and computer vision analyses.The cover images are generated in an anime style using state-of-the-art diffusion models,ensuring the transmitted images appear more natural.This study introduces fixed neural network technology that allows senders to transmit only minimal critical information alongside stego-images.Recipients can accurately reconstruct secret images using this compact data,significantly reducing transmission overhead compared to conventional deep steganography.Furthermore,our framework innovatively integrates ElGamal,a cryptographic algorithm,to protect critical information during transmission,enhancing overall system security and ensuring end-to-end information protection.This dual optimization of payload reduction and cryptographic reinforcement establishes a new paradigm for secure and efficient image steganography. 展开更多
关键词 Image steganography fixed neural network secure diffusion models ELGAMAL
在线阅读 下载PDF
A survey of backdoor attacks and defenses:From deep neural networks to large language models
13
作者 Ling-Xin Jin Wei Jiang +5 位作者 Xiang-Yu Wen Mei-Yu Lin Jin-Yu Zhan Xing-Zhi Zhou Maregu Assefa Habtie Naoufel Werghi 《Journal of Electronic Science and Technology》 2025年第3期13-35,共23页
Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susce... Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susceptibility to backdoors maliciously injected by adversaries.This vulnerability arises due to the intricate architecture and opacity of DNNs,resulting in numerous redundant neurons embedded within the models.Adversaries exploit these vulnerabilities to conceal malicious backdoor information within DNNs,thereby causing erroneous outputs and posing substantial threats to the efficacy of DNN-based applications.This article presents a comprehensive survey of backdoor attacks against DNNs and the countermeasure methods employed to mitigate them.Initially,we trace the evolution of the concept from traditional backdoor attacks to backdoor attacks against DNNs,highlighting the feasibility and practicality of generating backdoor attacks against DNNs.Subsequently,we provide an overview of notable works encompassing various attack and defense strategies,facilitating a comparative analysis of their approaches.Through these discussions,we offer constructive insights aimed at refining these techniques.Finally,we extend our research perspective to the domain of large language models(LLMs)and synthesize the characteristics and developmental trends of backdoor attacks and defense methods targeting LLMs.Through a systematic review of existing studies on backdoor vulnerabilities in LLMs,we identify critical open challenges in this field and propose actionable directions for future research. 展开更多
关键词 Backdoor Attacks Backdoor defenses Deep neural networks Large language model
在线阅读 下载PDF
Kolmogorov-Arnold networks modeling of wall pressure wavenumber-frequency spectra under turbulent boundary layers
14
作者 Zhiteng Zhou Yi Liu +1 位作者 Shizhao Wang Guowei He 《Theoretical & Applied Mechanics Letters》 2025年第2期115-121,共7页
The empirical models for wavenumber-frequency spectra of wall pressure are broadly used in the fast prediction of aerodynamic and hydrodynamic noise.However,it needs to fit the parameter using massive data and is only... The empirical models for wavenumber-frequency spectra of wall pressure are broadly used in the fast prediction of aerodynamic and hydrodynamic noise.However,it needs to fit the parameter using massive data and is only used for limited cases.In this letter,we propose Kolmogorov-Arnold networks(KAN)base models for wavenumber-frequency spectra of pressure fluctuations under turbulent boundary layers.The results are compared with DNS results.In turbulent channel flows,it is found that the KAN base model leads to a smooth wavenumber-frequency spectrum with sparse samples.In the turbulent flow over an axisymmetric body of revolution,the KAN base model captures the wavenumber-frequency spectra near the convective peak. 展开更多
关键词 Wavenumber-frequency spectra Kolmogorov-Arnold networks modeling Turbulent boundary layers
在线阅读 下载PDF
A hybrid data-driven approach for rainfall-induced landslide susceptibility mapping:Physically-based probabilistic model with convolutional neural network
15
作者 Hong-Zhi Cui Bin Tong +2 位作者 Tao Wang Jie Dou Jian Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4933-4951,共19页
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region... Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale. 展开更多
关键词 Rainfall landslides Landslide susceptibility mapping Hybrid model Physically-based model Convolution neural network(CNN) Probability of failure(POF)
在线阅读 下载PDF
Enhancing hydrogel predictive modeling:an augmented neural network approach for swelling dynamics in pH-responsive hydrogels
16
作者 M.A.FARAJI M.ASKARI-SEDEH +1 位作者 A.ZOLFAGHARIAN M.BAGHANI 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1787-1808,共22页
The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional expe... The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional experimental methods struggle to capture stress distributions due to technical limitations,while numerical approaches are often computationally intensive.This study presents a hybrid framework combining analytical modeling and machine learning(ML)to overcome these challenges.An analytical model is used to simulate transient swelling behaviors and stress distributions,and is confirmed to be viable through the comparison of the obtained simulation results with the existing experimental swelling data.The predictions from this model are used to train neural networks,including a two-step augmented architecture.The initial neural network predicts hydration values,which are then fed into a second network to predict stress distributions,effectively capturing nonlinear interdependencies.This approach achieves mean absolute errors(MAEs)as low as 0.031,with average errors of 1.9%for the radial stress and 2.55%for the hoop stress.This framework significantly enhances the predictive accuracy and reduces the computational complexity,offering actionable insights for optimizing hydrogel-based systems. 展开更多
关键词 transient swelling pH-responsive hydrogel neural network data-driven model hydration and stress dynamics
在线阅读 下载PDF
A precise magnetic modeling method for scientific satellites based on a self-attention mechanism and Kolmogorov-Arnold Networks
17
作者 Ye Liu Xingjian Shi +2 位作者 Wenzhe Yang Zhiming Cai Huawang Li 《Astronomical Techniques and Instruments》 2025年第1期1-9,共9页
As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additi... As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additionally,there is a growing need to address the alternating magnetic fields produced by the spacecraft itself.This paper introduces a novel modeling method for spacecraft magnetic dipoles using an integrated self-attention mechanism and a transformer combined with Kolmogorov-Arnold Networks.The self-attention mechanism captures correlations among globally sparse data,establishing dependencies b.etween sparse magnetometer readings.Concurrently,the Kolmogorov-Arnold Network,proficient in modeling implicit numerical relationships between data features,enhances the ability to learn subtle patterns.Comparative experiments validate the capability of the proposed method to precisely model magnetic dipoles,achieving maximum Root Mean Square Errors of 24.06 mA·m^(2)and 0.32 cm for size and location modeling,respectively.The spacecraft magnetic model established using this method accurately computes magnetic fields and alternating magnetic fields at designated surfaces or points.This approach facilitates the rapid and precise construction of individual and complete spacecraft magnetic models,enabling the verification of magnetic specifications from the spacecraft design phase. 展开更多
关键词 Magnetic dipole model Self-attention mechanism Kolmogorov-Arnold networks Alternating current magnetic fields
在线阅读 下载PDF
Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
18
作者 Xiongding Liu Xiaodan Zhao +1 位作者 Xiaojing Zhong Wu Wei 《Chinese Physics B》 2025年第6期262-274,共13页
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d... This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19. 展开更多
关键词 epidemic spreading SEIQR model stability and sensitivity analysis heterogeneous complex networks optimal control
原文传递
A Design of Predictive Intelligent Networks for the Analysis of Fractional Model of TB-Virus
19
作者 Muhammad Asif Zahoor Raja Aqsa Zafar Abbasi +2 位作者 Kottakkaran Sooppy Nisar Ayesha Rafiq Muhammad Shoaib 《Computer Modeling in Engineering & Sciences》 2025年第5期2133-2153,共21页
Being a nonlinear operator,fractional derivatives can affect the enforcement of existence at any given time.As a result,the memory effect has an impact on all nonlinear processes modeled by fractional order differenti... Being a nonlinear operator,fractional derivatives can affect the enforcement of existence at any given time.As a result,the memory effect has an impact on all nonlinear processes modeled by fractional order differential equations(FODEs).The goal of this study is to increase the fractional model of the TB virus’s(FMTBV)accuracy.Stochastic solvers have never been used to solve FMTBV previously.The Bayesian regularized artificial(BRA)method and neural networks(NNs),often referred to as BRA-NNs,were used to solve the FMTBV model.Each scenario features five occurrences that each reflect a different order of derivatives,ranging from 0.8,0.85,0.9,0.95,and 1,as well as five potential rates for different parameters.Training data made up 90%of the data,testing data made up 5%,and validation data made up 5%of the data used to illustrate the FMTBV’s approximations.To verify that the BRA-NNs were correct,the generated simulations were described in the following solutions using the FOLotkaVolterra approach in MATLAB.Comprehensive Simulink results in terms of mean square error,error histogram,and regression analysis investigations further highlight the competence,dependability,and accuracy of the suggested BRA-NNs. 展开更多
关键词 Fractional model of TB-Virus(FMTBV) artificial neural network bayesian regularization
在线阅读 下载PDF
MODIFIED INERTIAL SUBGRADIENT EXTRAGRADIENT METHODS FOR SOLVING A SUPPLY CHAIN NETWORK EQUILIBRIUM MODEL
20
作者 Zhuang SHAN 《Acta Mathematica Scientia》 2025年第3期1223-1234,共12页
Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at... Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at each iteration by incorporating adaptive parameter selection and a more general subgradient projection operator. The advantages of the proposed method are highlighted by the proof of strong convergence presented in the paper. Several concrete examples are given to demonstrate the effectiveness of the algorithm, with comparisons illustrating its superior CPU running time compared to alternative techniques. The practical applicability of the algorithm is also demonstrated by applying it to a realistic supply chain network model. 展开更多
关键词 supply chain network equilibrium model subgradient extragradient algorithm Tseng method variational inequalities strong convergence
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部