The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Current concrete surface crack detection methods cannot simultaneously achieve high detection accuracy and efficiency.Thus,this study focuses on the recognition and classification of crack images and proposes a concre...Current concrete surface crack detection methods cannot simultaneously achieve high detection accuracy and efficiency.Thus,this study focuses on the recognition and classification of crack images and proposes a concrete crack detection method that integrates the Inception module and a quantum convolutional neural network.First,the features of concrete cracks are highlighted by image gray processing,morphological operations,and threshold segmentation,and then the image is quantum coded by angle coding to transform the classical image information into quantum image information.Then,quantum circuits are used to implement classical image convolution operations to improve the convergence speed of the model and enhance the image representation.Second,two image input paths are designed:one with a quantum convolutional layer and the other with a classical convolutional layer.Finally,comparative experiments are conducted using different parameters to determine the optimal concrete crack classification parameter values for concrete crack image classification.Experimental results show that the method is suitable for crack classification in different scenarios,and training speed is greatly improved compared with that of existing deep learning models.The two evaluation metrics,accuracy and recall,are considerably enhanced.展开更多
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based...With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.展开更多
This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophagea...This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophageal reflux disease(GERD)monitoring.Unlike conventional approaches limited to four basic postures,CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions,providing enhanced resolution for personalized health assessment.The architecture introduces a unique integration of three complementary components:1D Convolutional Neural Networks(1D-CNN)for efficient local spatial feature extraction,Gated Recurrent Units(GRU)to capture short-termtemporal dependencieswith reduced computational complexity,and Bidirectional Long Short-Term Memory(Bi-LSTM)networks for modeling long-term temporal context in both forward and backward directions.This complementary integration allows the model to better represent dynamic and contextual information inherent in the sensor data,surpassing the performance of simpler or previously published hybrid models.Experiments were conducted on a benchmark dataset consisting of 18 volunteers(age range:19–24 years,mean 20.56±1.1 years;height 164.78±8.18 cm;weight 55.39±8.30 kg;BMI 20.24±2.04),monitored via a single abdominal accelerometer.A subjectindependent evaluation protocol with multiple random splits was employed to ensure robustness and generalizability.The proposed model achieves an average Accuracy of 87.60% and F1-score of 83.38%,both reported with standard deviations over multiple runs,outperforming several baseline and state-of-the-art methods.By releasing the dataset publicly and detailing themodel design,this work aims to facilitate reproducibility and advance research in sleep posture classification for clinical applications.展开更多
Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accu...Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accurate assessment of plant health.In this study,a CNN model was specifically designed and tested to detect and categorize diseases on fig tree leaves.The researchers utilized a dataset of 3422 images,divided into four classes:healthy,fig rust,fig mosaic,and anthracnose.These diseases can significantly reduce the yield and quality of fig tree fruit.The objective of this research is to develop a CNN that can identify and categorize diseases in fig tree leaves.The data for this study was collected from gardens in the Amandi and Mamash Khail Bannu districts of the Khyber Pakhtunkhwa region in Pakistan.To minimize the risk of overfitting and enhance the model’s performance,early stopping techniques and data augmentation were employed.As a result,the model achieved a training accuracy of 91.53%and a validation accuracy of 90.12%,which are considered respectable.This comprehensive model assists farmers in the early identification and categorization of fig tree leaf diseases.Our experts believe that CNNs could serve as valuable tools for accurate disease classification and detection in precision agriculture.We recommend further research to explore additional data sources and more advanced neural networks to improve the model’s accuracy and applicability.Future research will focus on expanding the dataset by including new diseases and testing the model in real-world scenarios to enhance sustainable farming practices.展开更多
This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well fo...This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well for the problem designed in this paper,due to the high similarities between different types of rice grains.The deep learning based solution is developed in the proposed solution.It contains pre-processing steps of data annotation using the watershed algorithm,auto-alignment using the major axis orientation,and image enhancement using the contrast-limited adaptive histogram equalization(CLAHE)technique.Then,the mask region-based convolutional neural networks(R-CNN)is trained to localize and classify rice grains in an input image.The performance is enhanced by using the transfer learning and the dropout regularization for overfitting prevention.The proposed method is validated using many scenarios of experiments,reported in the forms of mean average precision(mAP)and a confusion matrix.It achieves above 80%mAP for main scenarios in the experiments.It is also shown to perform outstanding,when compared to human experts.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel dat...Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models.展开更多
With the development of deep learning and Convolutional Neural Networks(CNNs),the accuracy of automatic food recognition based on visual data have significantly improved.Some research studies have shown that the deepe...With the development of deep learning and Convolutional Neural Networks(CNNs),the accuracy of automatic food recognition based on visual data have significantly improved.Some research studies have shown that the deeper the model is,the higher the accuracy is.However,very deep neural networks would be affected by the overfitting problem and also consume huge computing resources.In this paper,a new classification scheme is proposed for automatic food-ingredient recognition based on deep learning.We construct an up-to-date combinational convolutional neural network(CBNet)with a subnet merging technique.Firstly,two different neural networks are utilized for learning interested features.Then,a well-designed feature fusion component aggregates the features from subnetworks,further extracting richer and more precise features for image classification.In order to learn more complementary features,the corresponding fusion strategies are also proposed,including auxiliary classifiers and hyperparameters setting.Finally,CBNet based on the well-known VGGNet,ResNet and DenseNet is evaluated on a dataset including 41 major categories of food ingredients and 100 images for each category.Theoretical analysis and experimental results demonstrate that CBNet achieves promising accuracy for multi-class classification and improves the performance of convolutional neural networks.展开更多
Hyperspectral image(HSI)classification has been one of themost important tasks in the remote sensing community over the last few decades.Due to the presence of highly correlated bands and limited training samples in H...Hyperspectral image(HSI)classification has been one of themost important tasks in the remote sensing community over the last few decades.Due to the presence of highly correlated bands and limited training samples in HSI,discriminative feature extraction was challenging for traditional machine learning methods.Recently,deep learning based methods have been recognized as powerful feature extraction tool and have drawn a significant amount of attention in HSI classification.Among various deep learning models,convolutional neural networks(CNNs)have shown huge success and offered great potential to yield high performance in HSI classification.Motivated by this successful performance,this paper presents a systematic review of different CNN architectures for HSI classification and provides some future guidelines.To accomplish this,our study has taken a few important steps.First,we have focused on different CNN architectures,which are able to extract spectral,spatial,and joint spectral-spatial features.Then,many publications related to CNN based HSI classifications have been reviewed systematically.Further,a detailed comparative performance analysis has been presented between four CNN models namely 1D CNN,2D CNN,3D CNN,and feature fusion based CNN(FFCNN).Four benchmark HSI datasets have been used in our experiment for evaluating the performance.Finally,we concluded the paper with challenges on CNN based HSI classification and future guidelines that may help the researchers to work on HSI classification using CNN.展开更多
In this paper,we propose a convolutional neural network(CNN)based on deep learning method for land cover classification of synthetic aperture radar(SAR)images.The proposed method consists of convolutional layers,p...In this paper,we propose a convolutional neural network(CNN)based on deep learning method for land cover classification of synthetic aperture radar(SAR)images.The proposed method consists of convolutional layers,pooling layers,a full connection layer and an output layer.The method acquires high-level abstractions for SAR data by using a hierarchical architecture composed of multiple non-linear transformations such as convolutions and poolings.The feature maps produced by convolutional layers are subsampled by pooling layers and then are converted into a feature vector by the full connection layer.The feature vector is then used by the output layer with softmax regression to perform land cover classification.The multi-layer method replaces hand-engineered features with backpropagation(BP)neural network algorithm for supervised feature learning,hierarchical feature extraction and land cover classification of SAR images.RADARSAT-2 ultra-fine beam high resolution HH-SAR images acquired in the rural urban fringe of the Greater Toronto Area(GTA)are selected for this study.The experiment results show that the accuracy of our classification method is about90%which is higher than that of nearest neighbor(NN).展开更多
Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI ...Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI is receiving a large amount of attention.Also,MRI tumor detection is usually followed by a biopsy(an invasive procedure),which is a medical procedure for brain tumor classification.It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures.Convolutional neural network(CNN)is deemed to be one of the best machine learning algorithms to achieve high-accuracy results in tumor identification and classification.In this paper,a CNN-based technique for brain tumor classification has been developed.The proposed CNN can distinguish between normal(no-cancer),astrocytoma tumors,gliomatosis cerebri tumors,and glioblastoma tumors.The implemented CNN was tested on MRI images that underwent a motion-correction procedure.The CNN was evaluated using two performance measurement procedures.The first one is a k-fold cross-validation testing method,in which we tested the dataset using k=8,10,12,and 14.The best accuracy for this procedure was 96.26%when k=10.To overcome the over-fitting problem that could be occurred in the k-fold testing method,we used a hold-out testing method as a second evaluation procedure.The results of this procedure succeeded in attaining 97.8%accuracy,with a specificity of 99.2%and a sensitivity of 97.32%.With this high accuracy,the developed CNN architecture could be considered an effective automated diagnosis method for the classification of brain tumors from MRI images.展开更多
Magnetic Resonance Imaging (MRI) is an important diagnostic technique for early detection of brain Tumor and the classification of brain Tumor from MRI image is a challenging research work because of its different sha...Magnetic Resonance Imaging (MRI) is an important diagnostic technique for early detection of brain Tumor and the classification of brain Tumor from MRI image is a challenging research work because of its different shapes, location and image intensities. For successful classification, the segmentation method is required to separate Tumor. Then important features are extracted from the segmented Tumor that is used to classify the Tumor. In this work, an efficient multilevel segmentation method is developed combining optimal thresholding and watershed segmentation technique followed by a morphological operation to separate the Tumor. Convolutional Neural Network (CNN) is then applied for feature extraction and finally, the Kernel Support Vector Machine (KSVM) is utilized for resultant classification that is justified by our experimental evaluation. Experimental results show that the proposed method effectively detect and classify the Tumor as cancerous or non-cancerous with promising accuracy.展开更多
A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an orig...A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an original image,and then different layers of grids are utilized to extract feature maps from different convolutional layers.Inspired by the spatial pyramid,the new network contains two parts,one of which is just like a standard convolutional neural network,composing of alternating convolutions and subsampling layers.But those convolution layers would be averagely pooled by the grid way to obtain feature maps,and then concatenated into a feature vector individually.Finally,those vectors are sequentially concatenated into a total feature vector as the last feature to the fully connection layer.This generated feature vector derives benefits from the classic and previous convolution layer,while the size of the grid adjusting the weight of the feature maps improves the recognition efficiency of the network.Experimental results demonstrate that this model improves the accuracy and applicability compared with the traditional model.展开更多
To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combine...To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combined by this method, and then the results after combination are made pooling operation, three sorts of CNN models(we named TBCNN, MCT-CNN and MMCT-CNN respectively) are constructed and then corresponding algorithmic thought are detailed on this basis. Secondly, relevant experiments and analyses are respectively designed to show the effects of three key parameters(convolution kernel, combination kernel number and word embedding) on three kinds of CNN models and to further demonstrate the effect of the models proposed. The experimental results show that compared with the traditional method of text classification in CNNs, term-based pooling method is addressed that not only the availability of the way is proved, but also the performance shows good superiority.展开更多
Deep learning has been recently achieving a great performance for malware classification task. Several research studies such as that of converting malware into gray-scale images have helped to improve the task of clas...Deep learning has been recently achieving a great performance for malware classification task. Several research studies such as that of converting malware into gray-scale images have helped to improve the task of classification in the sense that it is easier to use an image as input to a model that uses Deep Learning’s Convolutional Neural Network. In this paper, we propose a Con-volutional Neural Network model for malware image classification that is able to reach 98% accuracy.展开更多
In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,th...In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,thoughts,stories,advertisements,and news,among many other content types.With the recent increase in online content,the importance of identifying fake and real news has increased.Although,there is a lot of work present to detect fake news,a study on Fuzzy CRNN was not explored into this direction.In this work,a system is designed to classify fake and real news using fuzzy logic.The initial feature extraction process is done using a convolutional recurrent neural network(CRNN).After the extraction of features,word indexing is done with high dimensionality.Then,based on the indexing measures,the ranking process identifies whether news is fake or real.The fuzzy CRNN model is trained to yield outstanding resultswith 99.99±0.01%accuracy.This work utilizes three different datasets(LIAR,LIAR-PLUS,and ISOT)to find the most accurate model.展开更多
Recently,the effectiveness of neural networks,especially convolutional neural networks,has been validated in the field of natural language processing,in which,sentiment classification for online reviews is an importan...Recently,the effectiveness of neural networks,especially convolutional neural networks,has been validated in the field of natural language processing,in which,sentiment classification for online reviews is an important and challenging task.Existing convolutional neural networks extract important features of sentences without local features or the feature sequence.Thus,these models do not perform well,especially for transition sentences.To this end,we propose a Piecewise Pooling Convolutional Neural Network(PPCNN)for sentiment classification.Firstly,with a sentence presented by word vectors,convolution operation is introduced to obtain the convolution feature map vectors.Secondly,these vectors are segmented according to the positions of transition words in sentences.Thirdly,the most significant feature of each local segment is extracted using max pooling mechanism,and then the different aspects of features can be extracted.Specifically,the relative sequence of these features is preserved.Finally,after processed by the dropout algorithm,the softmax classifier is trained for sentiment classification.Experimental results show that the proposed method PPCNN is effective and superior to other baseline methods,especially for datasets with transition sentences.展开更多
Spectral and spatial features in remotely sensed data play an irreplaceable role in classifying crop types for precision agriculture. Despite the thriving establishment of the handcrafted features, designing or select...Spectral and spatial features in remotely sensed data play an irreplaceable role in classifying crop types for precision agriculture. Despite the thriving establishment of the handcrafted features, designing or selecting such features valid for specific crop types requires prior knowledge and thus remains an open challenge. Convolutional neural networks(CNNs) can effectively overcome this issue with their advanced ability to generate high-level features automatically but are still inadequate in mining spectral features compared to mining spatial features. This study proposed an enhanced spectral feature called Stacked Spectral Feature Space Patch(SSFSP) for CNN-based crop classification. SSFSP is a stack of twodimensional(2 D) gridded spectral feature images that record various crop types’ spatial and intensity distribution characteristics in a 2 D feature space consisting of two spectral bands. SSFSP can be input into2 D-CNNs to support the simultaneous mining of spectral and spatial features, as the spectral features are successfully converted to 2 D images that can be processed by CNN. We tested the performance of SSFSP by using it as the input to seven CNN models and one multilayer perceptron model for crop type classification compared to using conventional spectral features as input. Using high spatial resolution hyperspectral datasets at three sites, the comparative study demonstrated that SSFSP outperforms conventional spectral features regarding classification accuracy, robustness, and training efficiency. The theoretical analysis summarizes three reasons for its excellent performance. First, SSFSP mines the spectral interrelationship with feature generality, which reduces the required number of training samples.Second, the intra-class variance can be largely reduced by grid partitioning. Third, SSFSP is a highly sparse feature, which reduces the dependence on the CNN model structure and enables early and fast convergence in model training. In conclusion, SSFSP has great potential for practical crop classification in precision agriculture.展开更多
Recently, convolutional neural networks (CNNs) have been utilized in medical imaging research field and have successfully shown their ability in image classification and detection. In this paper we used a CNN combined...Recently, convolutional neural networks (CNNs) have been utilized in medical imaging research field and have successfully shown their ability in image classification and detection. In this paper we used a CNN combined with a wavelet transform approach for classifying a dataset of 448 lung CT images into 4 categories, e.g. lung adenocarcinoma, lung squamous cell carcinoma, metastatic lung cancer, and normal. The key difference between the commonly-used CNNs and the presented method is that in this method, we adopt the use of redundant wavelet coefficients at level 1 as inputs to the CNN, instead of using original images. One of the main advantages of the proposed method is that it is not necessary to extract regions of interest from original images. The wavelet coefficients of the entire image are used as inputs to the CNN. We compare the classification performance of the proposed method to that of an existing CNN classifier and a CNN-based support vector machine classifier. The experimental results show that the proposed method outperforms the other two methods and achieve the highest overall accuracy of 91.9%. It demonstrates the potential for use in classification of lung diseases in CT images.展开更多
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金supported by 2023 National College Students'Innovation and Entrepreneurship Training Program project"Building Crack Structure Safety Detection based on Quantum Convolutional Neural Network intelligent Algorithm-A case study of Sanzhuang Town,Donggang District,Rizhao City"(NO.202310429224).
文摘Current concrete surface crack detection methods cannot simultaneously achieve high detection accuracy and efficiency.Thus,this study focuses on the recognition and classification of crack images and proposes a concrete crack detection method that integrates the Inception module and a quantum convolutional neural network.First,the features of concrete cracks are highlighted by image gray processing,morphological operations,and threshold segmentation,and then the image is quantum coded by angle coding to transform the classical image information into quantum image information.Then,quantum circuits are used to implement classical image convolution operations to improve the convergence speed of the model and enhance the image representation.Second,two image input paths are designed:one with a quantum convolutional layer and the other with a classical convolutional layer.Finally,comparative experiments are conducted using different parameters to determine the optimal concrete crack classification parameter values for concrete crack image classification.Experimental results show that the method is suitable for crack classification in different scenarios,and training speed is greatly improved compared with that of existing deep learning models.The two evaluation metrics,accuracy and recall,are considerably enhanced.
基金supported by the National Key Research and Development Program of China No.2023YFA1009500.
文摘With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number:NCUD.02-2024.11.
文摘This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophageal reflux disease(GERD)monitoring.Unlike conventional approaches limited to four basic postures,CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions,providing enhanced resolution for personalized health assessment.The architecture introduces a unique integration of three complementary components:1D Convolutional Neural Networks(1D-CNN)for efficient local spatial feature extraction,Gated Recurrent Units(GRU)to capture short-termtemporal dependencieswith reduced computational complexity,and Bidirectional Long Short-Term Memory(Bi-LSTM)networks for modeling long-term temporal context in both forward and backward directions.This complementary integration allows the model to better represent dynamic and contextual information inherent in the sensor data,surpassing the performance of simpler or previously published hybrid models.Experiments were conducted on a benchmark dataset consisting of 18 volunteers(age range:19–24 years,mean 20.56±1.1 years;height 164.78±8.18 cm;weight 55.39±8.30 kg;BMI 20.24±2.04),monitored via a single abdominal accelerometer.A subjectindependent evaluation protocol with multiple random splits was employed to ensure robustness and generalizability.The proposed model achieves an average Accuracy of 87.60% and F1-score of 83.38%,both reported with standard deviations over multiple runs,outperforming several baseline and state-of-the-art methods.By releasing the dataset publicly and detailing themodel design,this work aims to facilitate reproducibility and advance research in sleep posture classification for clinical applications.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accurate assessment of plant health.In this study,a CNN model was specifically designed and tested to detect and categorize diseases on fig tree leaves.The researchers utilized a dataset of 3422 images,divided into four classes:healthy,fig rust,fig mosaic,and anthracnose.These diseases can significantly reduce the yield and quality of fig tree fruit.The objective of this research is to develop a CNN that can identify and categorize diseases in fig tree leaves.The data for this study was collected from gardens in the Amandi and Mamash Khail Bannu districts of the Khyber Pakhtunkhwa region in Pakistan.To minimize the risk of overfitting and enhance the model’s performance,early stopping techniques and data augmentation were employed.As a result,the model achieved a training accuracy of 91.53%and a validation accuracy of 90.12%,which are considered respectable.This comprehensive model assists farmers in the early identification and categorization of fig tree leaf diseases.Our experts believe that CNNs could serve as valuable tools for accurate disease classification and detection in precision agriculture.We recommend further research to explore additional data sources and more advanced neural networks to improve the model’s accuracy and applicability.Future research will focus on expanding the dataset by including new diseases and testing the model in real-world scenarios to enhance sustainable farming practices.
文摘This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well for the problem designed in this paper,due to the high similarities between different types of rice grains.The deep learning based solution is developed in the proposed solution.It contains pre-processing steps of data annotation using the watershed algorithm,auto-alignment using the major axis orientation,and image enhancement using the contrast-limited adaptive histogram equalization(CLAHE)technique.Then,the mask region-based convolutional neural networks(R-CNN)is trained to localize and classify rice grains in an input image.The performance is enhanced by using the transfer learning and the dropout regularization for overfitting prevention.The proposed method is validated using many scenarios of experiments,reported in the forms of mean average precision(mAP)and a confusion matrix.It achieves above 80%mAP for main scenarios in the experiments.It is also shown to perform outstanding,when compared to human experts.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金supported in part by the National Natural Science Foundation of China under Grant(62171045,62201090)in part by the National Key Research and Development Program of China under Grants(2020YFB1807602,2019YFB1804404).
文摘Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models.
基金This paper is partially supported by National Natural Foundation of China(Grant No.61772561)the Key Research&Development Plan of Hunan Province(Grant No.2018NK2012)+2 种基金Postgraduate Research and Innovative Project of Central South University of Forestry and Technology(Grant No.20183012)Graduate Education and Teaching Reform Project of Central South University of Forestry and Technology(Grant No.2018JG005)Teaching Reform Project of Central South University of Forestry and Technology(Grant No.20180682).
文摘With the development of deep learning and Convolutional Neural Networks(CNNs),the accuracy of automatic food recognition based on visual data have significantly improved.Some research studies have shown that the deeper the model is,the higher the accuracy is.However,very deep neural networks would be affected by the overfitting problem and also consume huge computing resources.In this paper,a new classification scheme is proposed for automatic food-ingredient recognition based on deep learning.We construct an up-to-date combinational convolutional neural network(CBNet)with a subnet merging technique.Firstly,two different neural networks are utilized for learning interested features.Then,a well-designed feature fusion component aggregates the features from subnetworks,further extracting richer and more precise features for image classification.In order to learn more complementary features,the corresponding fusion strategies are also proposed,including auxiliary classifiers and hyperparameters setting.Finally,CBNet based on the well-known VGGNet,ResNet and DenseNet is evaluated on a dataset including 41 major categories of food ingredients and 100 images for each category.Theoretical analysis and experimental results demonstrate that CBNet achieves promising accuracy for multi-class classification and improves the performance of convolutional neural networks.
文摘Hyperspectral image(HSI)classification has been one of themost important tasks in the remote sensing community over the last few decades.Due to the presence of highly correlated bands and limited training samples in HSI,discriminative feature extraction was challenging for traditional machine learning methods.Recently,deep learning based methods have been recognized as powerful feature extraction tool and have drawn a significant amount of attention in HSI classification.Among various deep learning models,convolutional neural networks(CNNs)have shown huge success and offered great potential to yield high performance in HSI classification.Motivated by this successful performance,this paper presents a systematic review of different CNN architectures for HSI classification and provides some future guidelines.To accomplish this,our study has taken a few important steps.First,we have focused on different CNN architectures,which are able to extract spectral,spatial,and joint spectral-spatial features.Then,many publications related to CNN based HSI classifications have been reviewed systematically.Further,a detailed comparative performance analysis has been presented between four CNN models namely 1D CNN,2D CNN,3D CNN,and feature fusion based CNN(FFCNN).Four benchmark HSI datasets have been used in our experiment for evaluating the performance.Finally,we concluded the paper with challenges on CNN based HSI classification and future guidelines that may help the researchers to work on HSI classification using CNN.
基金Supported by the National Natural Science Foundation of China(61303214)the Natural Science Foundation of Hubei Province(2014CFB718,2015CFB256)
文摘In this paper,we propose a convolutional neural network(CNN)based on deep learning method for land cover classification of synthetic aperture radar(SAR)images.The proposed method consists of convolutional layers,pooling layers,a full connection layer and an output layer.The method acquires high-level abstractions for SAR data by using a hierarchical architecture composed of multiple non-linear transformations such as convolutions and poolings.The feature maps produced by convolutional layers are subsampled by pooling layers and then are converted into a feature vector by the full connection layer.The feature vector is then used by the output layer with softmax regression to perform land cover classification.The multi-layer method replaces hand-engineered features with backpropagation(BP)neural network algorithm for supervised feature learning,hierarchical feature extraction and land cover classification of SAR images.RADARSAT-2 ultra-fine beam high resolution HH-SAR images acquired in the rural urban fringe of the Greater Toronto Area(GTA)are selected for this study.The experiment results show that the accuracy of our classification method is about90%which is higher than that of nearest neighbor(NN).
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project Number PNU-DRI-RI-20-029.
文摘Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI is receiving a large amount of attention.Also,MRI tumor detection is usually followed by a biopsy(an invasive procedure),which is a medical procedure for brain tumor classification.It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures.Convolutional neural network(CNN)is deemed to be one of the best machine learning algorithms to achieve high-accuracy results in tumor identification and classification.In this paper,a CNN-based technique for brain tumor classification has been developed.The proposed CNN can distinguish between normal(no-cancer),astrocytoma tumors,gliomatosis cerebri tumors,and glioblastoma tumors.The implemented CNN was tested on MRI images that underwent a motion-correction procedure.The CNN was evaluated using two performance measurement procedures.The first one is a k-fold cross-validation testing method,in which we tested the dataset using k=8,10,12,and 14.The best accuracy for this procedure was 96.26%when k=10.To overcome the over-fitting problem that could be occurred in the k-fold testing method,we used a hold-out testing method as a second evaluation procedure.The results of this procedure succeeded in attaining 97.8%accuracy,with a specificity of 99.2%and a sensitivity of 97.32%.With this high accuracy,the developed CNN architecture could be considered an effective automated diagnosis method for the classification of brain tumors from MRI images.
文摘Magnetic Resonance Imaging (MRI) is an important diagnostic technique for early detection of brain Tumor and the classification of brain Tumor from MRI image is a challenging research work because of its different shapes, location and image intensities. For successful classification, the segmentation method is required to separate Tumor. Then important features are extracted from the segmented Tumor that is used to classify the Tumor. In this work, an efficient multilevel segmentation method is developed combining optimal thresholding and watershed segmentation technique followed by a morphological operation to separate the Tumor. Convolutional Neural Network (CNN) is then applied for feature extraction and finally, the Kernel Support Vector Machine (KSVM) is utilized for resultant classification that is justified by our experimental evaluation. Experimental results show that the proposed method effectively detect and classify the Tumor as cancerous or non-cancerous with promising accuracy.
基金Supported by the National Natural Science Foundation of China(61601176)the Science and Technology Foundation of Hubei Provincial Department of Education(Q20161405)
文摘A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an original image,and then different layers of grids are utilized to extract feature maps from different convolutional layers.Inspired by the spatial pyramid,the new network contains two parts,one of which is just like a standard convolutional neural network,composing of alternating convolutions and subsampling layers.But those convolution layers would be averagely pooled by the grid way to obtain feature maps,and then concatenated into a feature vector individually.Finally,those vectors are sequentially concatenated into a total feature vector as the last feature to the fully connection layer.This generated feature vector derives benefits from the classic and previous convolution layer,while the size of the grid adjusting the weight of the feature maps improves the recognition efficiency of the network.Experimental results demonstrate that this model improves the accuracy and applicability compared with the traditional model.
文摘To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combined by this method, and then the results after combination are made pooling operation, three sorts of CNN models(we named TBCNN, MCT-CNN and MMCT-CNN respectively) are constructed and then corresponding algorithmic thought are detailed on this basis. Secondly, relevant experiments and analyses are respectively designed to show the effects of three key parameters(convolution kernel, combination kernel number and word embedding) on three kinds of CNN models and to further demonstrate the effect of the models proposed. The experimental results show that compared with the traditional method of text classification in CNNs, term-based pooling method is addressed that not only the availability of the way is proved, but also the performance shows good superiority.
文摘Deep learning has been recently achieving a great performance for malware classification task. Several research studies such as that of converting malware into gray-scale images have helped to improve the task of classification in the sense that it is easier to use an image as input to a model that uses Deep Learning’s Convolutional Neural Network. In this paper, we propose a Con-volutional Neural Network model for malware image classification that is able to reach 98% accuracy.
文摘In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,thoughts,stories,advertisements,and news,among many other content types.With the recent increase in online content,the importance of identifying fake and real news has increased.Although,there is a lot of work present to detect fake news,a study on Fuzzy CRNN was not explored into this direction.In this work,a system is designed to classify fake and real news using fuzzy logic.The initial feature extraction process is done using a convolutional recurrent neural network(CRNN).After the extraction of features,word indexing is done with high dimensionality.Then,based on the indexing measures,the ranking process identifies whether news is fake or real.The fuzzy CRNN model is trained to yield outstanding resultswith 99.99±0.01%accuracy.This work utilizes three different datasets(LIAR,LIAR-PLUS,and ISOT)to find the most accurate model.
基金This work is supported in part by the Natural Science Foundation of China under grants(61503112,61673152 and 61503116).
文摘Recently,the effectiveness of neural networks,especially convolutional neural networks,has been validated in the field of natural language processing,in which,sentiment classification for online reviews is an important and challenging task.Existing convolutional neural networks extract important features of sentences without local features or the feature sequence.Thus,these models do not perform well,especially for transition sentences.To this end,we propose a Piecewise Pooling Convolutional Neural Network(PPCNN)for sentiment classification.Firstly,with a sentence presented by word vectors,convolution operation is introduced to obtain the convolution feature map vectors.Secondly,these vectors are segmented according to the positions of transition words in sentences.Thirdly,the most significant feature of each local segment is extracted using max pooling mechanism,and then the different aspects of features can be extracted.Specifically,the relative sequence of these features is preserved.Finally,after processed by the dropout algorithm,the softmax classifier is trained for sentiment classification.Experimental results show that the proposed method PPCNN is effective and superior to other baseline methods,especially for datasets with transition sentences.
基金supported by the National Natural Science Foundation of China (67441830108 and 41871224)。
文摘Spectral and spatial features in remotely sensed data play an irreplaceable role in classifying crop types for precision agriculture. Despite the thriving establishment of the handcrafted features, designing or selecting such features valid for specific crop types requires prior knowledge and thus remains an open challenge. Convolutional neural networks(CNNs) can effectively overcome this issue with their advanced ability to generate high-level features automatically but are still inadequate in mining spectral features compared to mining spatial features. This study proposed an enhanced spectral feature called Stacked Spectral Feature Space Patch(SSFSP) for CNN-based crop classification. SSFSP is a stack of twodimensional(2 D) gridded spectral feature images that record various crop types’ spatial and intensity distribution characteristics in a 2 D feature space consisting of two spectral bands. SSFSP can be input into2 D-CNNs to support the simultaneous mining of spectral and spatial features, as the spectral features are successfully converted to 2 D images that can be processed by CNN. We tested the performance of SSFSP by using it as the input to seven CNN models and one multilayer perceptron model for crop type classification compared to using conventional spectral features as input. Using high spatial resolution hyperspectral datasets at three sites, the comparative study demonstrated that SSFSP outperforms conventional spectral features regarding classification accuracy, robustness, and training efficiency. The theoretical analysis summarizes three reasons for its excellent performance. First, SSFSP mines the spectral interrelationship with feature generality, which reduces the required number of training samples.Second, the intra-class variance can be largely reduced by grid partitioning. Third, SSFSP is a highly sparse feature, which reduces the dependence on the CNN model structure and enables early and fast convergence in model training. In conclusion, SSFSP has great potential for practical crop classification in precision agriculture.
文摘Recently, convolutional neural networks (CNNs) have been utilized in medical imaging research field and have successfully shown their ability in image classification and detection. In this paper we used a CNN combined with a wavelet transform approach for classifying a dataset of 448 lung CT images into 4 categories, e.g. lung adenocarcinoma, lung squamous cell carcinoma, metastatic lung cancer, and normal. The key difference between the commonly-used CNNs and the presented method is that in this method, we adopt the use of redundant wavelet coefficients at level 1 as inputs to the CNN, instead of using original images. One of the main advantages of the proposed method is that it is not necessary to extract regions of interest from original images. The wavelet coefficients of the entire image are used as inputs to the CNN. We compare the classification performance of the proposed method to that of an existing CNN classifier and a CNN-based support vector machine classifier. The experimental results show that the proposed method outperforms the other two methods and achieve the highest overall accuracy of 91.9%. It demonstrates the potential for use in classification of lung diseases in CT images.