BACKGROUND Accurate preoperative T staging is essential for determining optimal treatment strategies in colorectal cancer(CRC).Low-keV virtual monoenergetic images(VMIs)have been shown to enhance lesion conspicuity.Th...BACKGROUND Accurate preoperative T staging is essential for determining optimal treatment strategies in colorectal cancer(CRC).Low-keV virtual monoenergetic images(VMIs)have been shown to enhance lesion conspicuity.This study aimed to assess the diagnostic value of dual-layer spectral computed tomography(CT)-derived VMIs,in combination with multiplanar reformation(MPR)and evaluation of peritumoral fat stranding(PFS),for improving the accuracy of T staging in CRC.AIM To assess the diagnostic performance of dual-layer spectral CT(DLSCT)VMIs,particularly at low energy levels,and their integration with personalized MPR for preoperative T staging of CRC.METHODS In this retrospective study,157 patients with pathologically confirmed CRC(mean age:63.5±12.1 years)underwent DLSCT within 1 week before surgery.VMIs ranging from 40 keV to 70 keV(at 10 keV intervals)and conventional polyenergetic images(PEIs)were reconstructed.Objective image quality parameters,including image noise,signal-to-noise ratio(SNR),and contrast-to-noise ratio(CNR),were quantified,alongside subjective image quality scores using a 5-point Likert scale.Interobserver agreement was evaluated usingκstatistics.Taking histopathology as the reference standard,the diagnostic accuracy of T staging(T1-2 vs T3-4)was compared across PEIs and VMIs,both with and without MPR and PFS.RESULTS Low-keV VMIs(40-70 keV)demonstrated significantly higher SNR and CNR than PEIs(all P<0.001).Notably,40-keV VMIs achieved noise levels comparable to PEIs(8.17±3.63 vs 8.53±2.90;P=0.673).Subjective image quality peaked at 40-50 keV VMIs(Likert scores 4.85-4.88 vs 3.97 for PEIs;P<0.001),supported by excellent interobserver agreement(κ=0.812-0.913).The combination of 40-50 keV VMIs with MPR yielded the highest T staging accuracy(94.27%)compared to axial PEIs(70.7%),with a sensitivity and specificity of 83.87%and 96.83%,respectively(Youden index=0.81;P<0.05).While PFS enhanced staging accuracy on PEIs(up to 77.07%with MPR),it provided no significant additional benefit for VMIs.CONCLUSION DLSCT VMIs at 40-50 keV significantly enhanced image quality and improved preoperative T staging accuracy of CRC when combined with MPR.These findings underscored the clinical value of low-keV spectral imaging in tailoring individualized treatment strategies.展开更多
Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and i...Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER).展开更多
Lithium metal anode has become a favorable candidate for next-generation rechargeable batteries.However, the unstable interface between lithium metal and electrolyte leads to the growth of dendrites,resulting in the l...Lithium metal anode has become a favorable candidate for next-generation rechargeable batteries.However, the unstable interface between lithium metal and electrolyte leads to the growth of dendrites,resulting in the low Coulombic efficiency and even the safety concerns. Herein, a rigid-flexible dual-layer vermiculite nanosheet(VN) based organic-inorganic hybrid film on lithium metal anode is proposed to suppress dendrite growth and relieve volume fluctuations. The inner mechanically robust VN layer(3 μm thick) enhances the mechanical properties of the protective layer, while the outer polymer(4 μm thick) can enhance the flexibility of the hybrid layer. The Li | Li symmetric cell with protected lithium shows an extended life of over 670 h. The full cell with Li anode protected by dual-layer interface exhibits a better capacity retention of 80% after 174 cycles in comparison to bare Li anode with 94 cycles.This study provides a novel approach and a significant step towards prolonging lifespan of lithium metal batteries.展开更多
Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra...Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.展开更多
With the growing demand for offshore energy,deepwater drilling has become a vital technology in petroleum engineering.However,conventional drilling systems often face limitations such as delayed bottomhole pressure re...With the growing demand for offshore energy,deepwater drilling has become a vital technology in petroleum engineering.However,conventional drilling systems often face limitations such as delayed bottomhole pressure response and low control precision,particularly under narrow pressure window and complex formation conditions.To address these challenges,Dual-layer Pipe dual-gradient drilling(DGD)technology has been introduced,utilizing a dual-pipe structure and downhole lift pumps to extend the pressure control range.Despite these advantages,current DGD systems lack fast and precise bottomhole pressure control due to their reliance on indirect flow-based methods.This study proposes a bottomhole pressure control method based on backpressure regulation using a hybrid fuzzy-PID control strategy.A dynamic pressure calculation model is developed for the Dual-layer Pipe DGD system,incorporating coupling among choke valve opening,surface backpressure,and bottomhole pressure.The fuzzy-PID controller adjusts valve operation in real-time based on pressure deviation and its rate of change,improving response speed and control accuracy.Simulink-based simulations demonstrate that the proposed system achieves rapid pressure regulation with an overshoot below 5%and steady-state error under 0.12%.Compared to conventional PID control,the fuzzy-PID system shows superior adaptability to pressure variations.This research enhances the theoretical foundation of backpressure control in deepwater DGD operations and provides a practical approach for improving safety and efficiency in complex drilling environments.展开更多
Orbital angular momentum(OAM),with its unique physical properties and vast application prospects,has attracted widespread attention in various fields.Nonetheless,the development of valid and practical acoustic OAM det...Orbital angular momentum(OAM),with its unique physical properties and vast application prospects,has attracted widespread attention in various fields.Nonetheless,the development of valid and practical acoustic OAM detection methods continues to be a challenging endeavor.In this paper,we propose a novel construction method of dual-layer metasurfaces to achieve a doubleconversion process for the waveform reshaping and differentiated focusing of two-dimensional vortex sources with different OAMs.Specifically,by utilizing a concise formula,a one-to-one correspondence is established between the OAM of incident vortex waves and different imaging points.The fundamental principle of this special conversion relationship is rigorously constrained by the directional compensation of phase and the material parameters of dual-layer metasurfaces with different quadratic phase distributions.More importantly,the highly consistent results between numerical demonstrations and acoustic experiments further confirm the feasibility and effectiveness of the proposed OAM detection scheme.Our work provides a new perspective on the precise manipulation for the phase of vortex fields,holding potential applications in super-resolution imaging and the design of acoustic OAM-based devices.展开更多
Efficient and accurate segmentation of complex microstructures is a critical challenge in establishing process-structure-property(PSP) linkages of materials. Deep learning(DL)-based instance segmentation algorithms sh...Efficient and accurate segmentation of complex microstructures is a critical challenge in establishing process-structure-property(PSP) linkages of materials. Deep learning(DL)-based instance segmentation algorithms show potential in achieving this goal.However, to ensure prediction reliability, the current algorithms usually have complex structures and demand vast training data.To overcome the model complexity and its dependence on the amount of data, we developed an ingenious DL framework based on a simple method called dual-layer semantics. In the framework, a data standardization module was designed to remove extraneous microstructural noise and accentuate desired structural characteristics, while a post-processing module was employed to further improve segmentation accuracy. The framework was successfully applied in a small dataset of bimodal Ti-6Al-4V microstructures with only 112 samples. Compared with the ground truth, it realizes an 86.81% accuracy IoU for the globular αphase and a 94.70% average size distribution similarity for the colony structures. More importantly, only 36 s was taken to handle a 1024 × 1024 micrograph, which is much faster than the treatment of experienced experts(usually 900 s). The framework proved reliable, interpretable, and scalable, enabling its utilization in complex microstructures to deepen the understanding of PSP linkages.展开更多
Serious bubble clogging in flow-field channels will hinder the water supply to the electrode of proton exchange membrane water electrolyzer(PEMWE),deteriorating the cell performance.In order to address this issue,the ...Serious bubble clogging in flow-field channels will hinder the water supply to the electrode of proton exchange membrane water electrolyzer(PEMWE),deteriorating the cell performance.In order to address this issue,the dual-layer flow field design has been proposed in our previous study.In this study,the VOF(volume of fluid)method is utilized to investigate the effects of different degassing layer and base heights on the bubble behavior in channel and determine the time for the bubbles to detach from the electrode surface.However,it is very timeconsuming to get the optimal combination of base layer and degassing layer heights due to the large number of potential cases,which needs to be calculated through computation-intensive physical model.Therefore,machine learning methods are adopted to accelerate the optimization.A data-driven surrogate model based on deep neural network(DNN)is developed and successfully trained using data obtained by the physical VOF method.Based on the highly efficient surrogate,genetic algorithm(GA)is further utilized to determine the optimal heights of base layer and degassing layer.Finally,the reliability of the optimization was validated by bubble visualization in channel and electrochemical characterization in PEMWE through experiments.展开更多
The dual-layer granular bed filter packed with randomly arranged granules was simulated to study the effects of bed depth of the lower layer of fine granules and the inlet gas velocity on the collection mechanism.The ...The dual-layer granular bed filter packed with randomly arranged granules was simulated to study the effects of bed depth of the lower layer of fine granules and the inlet gas velocity on the collection mechanism.The computational results show that the collection efficiency is much better from this granular bed than a single-layer granular bed,especially for particle diameters of 1-10μm.The inlet gas velocity has less effect on the grade collection efficiency of the dual-layer granular bed than of the single-layer granular bed.The dual-layer granular bed provides a high collection efficiency and low pressure drop.The relationship between the grade collection efficiency and the Stokes number(St)based on the inlet gas velocity is obtained.If St is below a threshold,the grade collection efficiency remains stable;if St is in value above threshold,the grade collection efficiency increases linearly with lg(St).As the bed depth of the lower layer of fine granules increases,the threshold for St shifts forward.展开更多
We propose an optical tensor core(OTC) architecture for neural network training. The key computational components of the OTC are the arrayed optical dot-product units(DPUs). The homodyne-detection-based DPUs can condu...We propose an optical tensor core(OTC) architecture for neural network training. The key computational components of the OTC are the arrayed optical dot-product units(DPUs). The homodyne-detection-based DPUs can conduct the essential computational work of neural network training, i.e., matrix-matrix multiplication. Dual-layer waveguide topology is adopted to feed data into these DPUs with ultra-low insertion loss and cross talk. Therefore, the OTC architecture allows a large-scale dot-product array and can be integrated into a photonic chip. The feasibility of the OTC and its effectiveness on neural network training are verified with numerical simulations.展开更多
A loop heat pipe(LHP)is a kind of passive heat transfer device that uses the latent heat of the working fluid and the capillary forces of the capillary wicks.It demonstrates high heat transfer efficiency,long-distance...A loop heat pipe(LHP)is a kind of passive heat transfer device that uses the latent heat of the working fluid and the capillary forces of the capillary wicks.It demonstrates high heat transfer efficiency,long-distance heat transfer,and high pipeline flexibility.The multi-evaporator loop heat pipe(MeLHP)is a special loop heat pipe with multiple evaporators so that heat collection and emission from multiple heat sources can be achieved.In this paper,a new type of the multi-evaporator loop heat pipe prototype with a dual-layer condenser was designed,which can ensure the uniform and symmetrical layout of pipelines.The working temperature was 20℃,and propylene was used as the working fluid.The performance of the same evaporator in a single-loop LHP was considered as a reference.The experiment was conducted under two heating modes,i.e.single-evaporator heating and multi-evaporator heating,and the working stability of the prototype was verified by applying periodic heating power change and adverse elevation condition.It was observed that the prototype can be successfully started in different heating modes with a heat transfer limit of 230 W.In the test,the four loops were different in heat transfer limit due to the differences of flow resistance,and less power distribution to the loop with lowest heat transfer limit was considered to be beneficial to the prototype’s performance.Meanwhile,the prototype showed good heat sharing characteristic as the maximum temperature difference is low(smaller than 2 K in single-evaporator heating mode and 0.5 K in multi-evaporator heating mode).The prototype was of good operational reliability and found to be adaptable to the adverse elevation and cyclic variation of the heating power to a certain extent.展开更多
By impacting a concave dual-layer liquid(with the oil and the dyed water)surface in a test tube,a compound jet with a water core and an oil shell is generated.The velocities of the jet's head(Vj)and the oil-water ...By impacting a concave dual-layer liquid(with the oil and the dyed water)surface in a test tube,a compound jet with a water core and an oil shell is generated.The velocities of the jet's head(Vj)and the oil-water interface(Vj')are experimentally determined against the initial thickness and the viscosity of the upper layer liquid.The results show that the oil-water interface can be roughly regarded as a pure material surface,whose velocity can be determined from the jet velocity and the initial location(or the film thickness).Furthermore,the effective density,viscosity and surface tension of the compound jet are used to evaluate the jetting velocity.The previous scaling relation for a single liquid jet can be used to give a good prediction with the effective quantities.The results of this paper can be used for the compound jet/droplet preparation.展开更多
Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual...Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500℃-700℃ and n(Ca)/n(Cl)molar ratios of 1.0-5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH)2. Mainly, the adsorption efficiency of HCI and utilization efficiency of Calcium were studied, by varying relevant factors including n(Ca)/n(Cl), tempera- ture, feeding method, water vapor and CO2. With a relatively higher HCl concentration of 1000ppm, the experimental results revealed that 600℃ may be the optimum temperature for HCl adsorption when optimum n (Ca)/n(Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with n(Ca)/n(Cl) = 2.5 at 600℃. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO2, and the utilization efficiency of calcium could be up to 74.4% without CO2, while was only 36.8% with CO2 when n(Ca)/n(Cl) was 2.5 at 600℃.展开更多
Dual-layer Metallic grating(DMG)structures as surface-enhanced Raman scattering(SERS)substrates are studied using benzenethiol as the probe analyte.The DMG structure consists of a SiO2 grating and 100-nm-thick gold co...Dual-layer Metallic grating(DMG)structures as surface-enhanced Raman scattering(SERS)substrates are studied using benzenethiol as the probe analyte.The DMG structure consists of a SiO2 grating and 100-nm-thick gold coating layers.An enhancement factor of 105 is achieved by optimizing the SiO 2 grating height within the range from 165 to 550 nm.The enhancement factor dependence on the SiO2 grating height is due to the surface plasmon excitation,which is dependent on the polarization of the incident light,and confirmed by finite difference time domain simulations.This study demonstrates the advantages of high uniformity,reproducibility and sensitivity in the DMG structures for SERS applications.展开更多
基金Supported by Jiangsu Province 333 Talent Key Industry Field Talent Project,No.[2022]21Key Scientific Research Program of Jiangsu Provincial Health Committee,No.ZD2021059+2 种基金Nantong Key Laboratory Project,No.[2020]163The Project of Nantong City Health Committee,No.MS2023027Young Medical Talents Fund of Health and Family Planning Commission of Nantong,No.QA2019006 and No.QNZ2023027.
文摘BACKGROUND Accurate preoperative T staging is essential for determining optimal treatment strategies in colorectal cancer(CRC).Low-keV virtual monoenergetic images(VMIs)have been shown to enhance lesion conspicuity.This study aimed to assess the diagnostic value of dual-layer spectral computed tomography(CT)-derived VMIs,in combination with multiplanar reformation(MPR)and evaluation of peritumoral fat stranding(PFS),for improving the accuracy of T staging in CRC.AIM To assess the diagnostic performance of dual-layer spectral CT(DLSCT)VMIs,particularly at low energy levels,and their integration with personalized MPR for preoperative T staging of CRC.METHODS In this retrospective study,157 patients with pathologically confirmed CRC(mean age:63.5±12.1 years)underwent DLSCT within 1 week before surgery.VMIs ranging from 40 keV to 70 keV(at 10 keV intervals)and conventional polyenergetic images(PEIs)were reconstructed.Objective image quality parameters,including image noise,signal-to-noise ratio(SNR),and contrast-to-noise ratio(CNR),were quantified,alongside subjective image quality scores using a 5-point Likert scale.Interobserver agreement was evaluated usingκstatistics.Taking histopathology as the reference standard,the diagnostic accuracy of T staging(T1-2 vs T3-4)was compared across PEIs and VMIs,both with and without MPR and PFS.RESULTS Low-keV VMIs(40-70 keV)demonstrated significantly higher SNR and CNR than PEIs(all P<0.001).Notably,40-keV VMIs achieved noise levels comparable to PEIs(8.17±3.63 vs 8.53±2.90;P=0.673).Subjective image quality peaked at 40-50 keV VMIs(Likert scores 4.85-4.88 vs 3.97 for PEIs;P<0.001),supported by excellent interobserver agreement(κ=0.812-0.913).The combination of 40-50 keV VMIs with MPR yielded the highest T staging accuracy(94.27%)compared to axial PEIs(70.7%),with a sensitivity and specificity of 83.87%and 96.83%,respectively(Youden index=0.81;P<0.05).While PFS enhanced staging accuracy on PEIs(up to 77.07%with MPR),it provided no significant additional benefit for VMIs.CONCLUSION DLSCT VMIs at 40-50 keV significantly enhanced image quality and improved preoperative T staging accuracy of CRC when combined with MPR.These findings underscored the clinical value of low-keV spectral imaging in tailoring individualized treatment strategies.
基金supported by the research program funded by the TKG Huchemssupported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea(20213030040590)supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2021R1A5A1028138)。
文摘Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER).
基金supported by National Natural Science Foundation of China (22179070, U1932220)。
文摘Lithium metal anode has become a favorable candidate for next-generation rechargeable batteries.However, the unstable interface between lithium metal and electrolyte leads to the growth of dendrites,resulting in the low Coulombic efficiency and even the safety concerns. Herein, a rigid-flexible dual-layer vermiculite nanosheet(VN) based organic-inorganic hybrid film on lithium metal anode is proposed to suppress dendrite growth and relieve volume fluctuations. The inner mechanically robust VN layer(3 μm thick) enhances the mechanical properties of the protective layer, while the outer polymer(4 μm thick) can enhance the flexibility of the hybrid layer. The Li | Li symmetric cell with protected lithium shows an extended life of over 670 h. The full cell with Li anode protected by dual-layer interface exhibits a better capacity retention of 80% after 174 cycles in comparison to bare Li anode with 94 cycles.This study provides a novel approach and a significant step towards prolonging lifespan of lithium metal batteries.
基金supported by the National Natural Science Foundation of China (21978253)the Fundamental Research Funds for the Central Universities (226-2022-00020, 226-2022-00055)。
文摘Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.
基金the Sichuan Provincial Key R&D Program(Regional Innovation Coop-eration Project 2025YFHZ0306)Open Fund(PLN 2022-46)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)Special Support for Sichuan Postdoctoral Research Projects.
文摘With the growing demand for offshore energy,deepwater drilling has become a vital technology in petroleum engineering.However,conventional drilling systems often face limitations such as delayed bottomhole pressure response and low control precision,particularly under narrow pressure window and complex formation conditions.To address these challenges,Dual-layer Pipe dual-gradient drilling(DGD)technology has been introduced,utilizing a dual-pipe structure and downhole lift pumps to extend the pressure control range.Despite these advantages,current DGD systems lack fast and precise bottomhole pressure control due to their reliance on indirect flow-based methods.This study proposes a bottomhole pressure control method based on backpressure regulation using a hybrid fuzzy-PID control strategy.A dynamic pressure calculation model is developed for the Dual-layer Pipe DGD system,incorporating coupling among choke valve opening,surface backpressure,and bottomhole pressure.The fuzzy-PID controller adjusts valve operation in real-time based on pressure deviation and its rate of change,improving response speed and control accuracy.Simulink-based simulations demonstrate that the proposed system achieves rapid pressure regulation with an overshoot below 5%and steady-state error under 0.12%.Compared to conventional PID control,the fuzzy-PID system shows superior adaptability to pressure variations.This research enhances the theoretical foundation of backpressure control in deepwater DGD operations and provides a practical approach for improving safety and efficiency in complex drilling environments.
基金supported by the National Key Research and Development Program of China(Grant Nos.2020YFA0710100,and 2023YFA1407100)National Natural Science Foundation of China(Grant No.12374410)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.20720220033)China Scholarship Council(Grant Nos.202106310004202106310005)。
文摘Orbital angular momentum(OAM),with its unique physical properties and vast application prospects,has attracted widespread attention in various fields.Nonetheless,the development of valid and practical acoustic OAM detection methods continues to be a challenging endeavor.In this paper,we propose a novel construction method of dual-layer metasurfaces to achieve a doubleconversion process for the waveform reshaping and differentiated focusing of two-dimensional vortex sources with different OAMs.Specifically,by utilizing a concise formula,a one-to-one correspondence is established between the OAM of incident vortex waves and different imaging points.The fundamental principle of this special conversion relationship is rigorously constrained by the directional compensation of phase and the material parameters of dual-layer metasurfaces with different quadratic phase distributions.More importantly,the highly consistent results between numerical demonstrations and acoustic experiments further confirm the feasibility and effectiveness of the proposed OAM detection scheme.Our work provides a new perspective on the precise manipulation for the phase of vortex fields,holding potential applications in super-resolution imaging and the design of acoustic OAM-based devices.
基金supported by the National Key R&D Program of China(Grant No.2023YFB4606502)the National Natural Science Foundation of China(Grant Nos.51871183 and 51874245)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NPU), China(Grant No.2020-TS-06)Sponsored by the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University。
文摘Efficient and accurate segmentation of complex microstructures is a critical challenge in establishing process-structure-property(PSP) linkages of materials. Deep learning(DL)-based instance segmentation algorithms show potential in achieving this goal.However, to ensure prediction reliability, the current algorithms usually have complex structures and demand vast training data.To overcome the model complexity and its dependence on the amount of data, we developed an ingenious DL framework based on a simple method called dual-layer semantics. In the framework, a data standardization module was designed to remove extraneous microstructural noise and accentuate desired structural characteristics, while a post-processing module was employed to further improve segmentation accuracy. The framework was successfully applied in a small dataset of bimodal Ti-6Al-4V microstructures with only 112 samples. Compared with the ground truth, it realizes an 86.81% accuracy IoU for the globular αphase and a 94.70% average size distribution similarity for the colony structures. More importantly, only 36 s was taken to handle a 1024 × 1024 micrograph, which is much faster than the treatment of experienced experts(usually 900 s). The framework proved reliable, interpretable, and scalable, enabling its utilization in complex microstructures to deepen the understanding of PSP linkages.
基金supported by a grant from National Natural Science Foundation of China(No.42302271)a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(No.N_PolyU559/21).
文摘Serious bubble clogging in flow-field channels will hinder the water supply to the electrode of proton exchange membrane water electrolyzer(PEMWE),deteriorating the cell performance.In order to address this issue,the dual-layer flow field design has been proposed in our previous study.In this study,the VOF(volume of fluid)method is utilized to investigate the effects of different degassing layer and base heights on the bubble behavior in channel and determine the time for the bubbles to detach from the electrode surface.However,it is very timeconsuming to get the optimal combination of base layer and degassing layer heights due to the large number of potential cases,which needs to be calculated through computation-intensive physical model.Therefore,machine learning methods are adopted to accelerate the optimization.A data-driven surrogate model based on deep neural network(DNN)is developed and successfully trained using data obtained by the physical VOF method.Based on the highly efficient surrogate,genetic algorithm(GA)is further utilized to determine the optimal heights of base layer and degassing layer.Finally,the reliability of the optimization was validated by bubble visualization in channel and electrochemical characterization in PEMWE through experiments.
基金This work was supported by the National Key R&D Program of China(Grant No.2016YFB0601101)the National Natural Sci-ence Foundation of China(Grant No.51576194).
文摘The dual-layer granular bed filter packed with randomly arranged granules was simulated to study the effects of bed depth of the lower layer of fine granules and the inlet gas velocity on the collection mechanism.The computational results show that the collection efficiency is much better from this granular bed than a single-layer granular bed,especially for particle diameters of 1-10μm.The inlet gas velocity has less effect on the grade collection efficiency of the dual-layer granular bed than of the single-layer granular bed.The dual-layer granular bed provides a high collection efficiency and low pressure drop.The relationship between the grade collection efficiency and the Stokes number(St)based on the inlet gas velocity is obtained.If St is below a threshold,the grade collection efficiency remains stable;if St is in value above threshold,the grade collection efficiency increases linearly with lg(St).As the bed depth of the lower layer of fine granules increases,the threshold for St shifts forward.
基金supported by the National Key R&D Program of China (No.2019YFB2203700)the National Natural Science Foundation of China (No.61822508)。
文摘We propose an optical tensor core(OTC) architecture for neural network training. The key computational components of the OTC are the arrayed optical dot-product units(DPUs). The homodyne-detection-based DPUs can conduct the essential computational work of neural network training, i.e., matrix-matrix multiplication. Dual-layer waveguide topology is adopted to feed data into these DPUs with ultra-low insertion loss and cross talk. Therefore, the OTC architecture allows a large-scale dot-product array and can be integrated into a photonic chip. The feasibility of the OTC and its effectiveness on neural network training are verified with numerical simulations.
基金The work presented in this paper is supported by the National Natural Science Foundation of China(Grant No.51776121).
文摘A loop heat pipe(LHP)is a kind of passive heat transfer device that uses the latent heat of the working fluid and the capillary forces of the capillary wicks.It demonstrates high heat transfer efficiency,long-distance heat transfer,and high pipeline flexibility.The multi-evaporator loop heat pipe(MeLHP)is a special loop heat pipe with multiple evaporators so that heat collection and emission from multiple heat sources can be achieved.In this paper,a new type of the multi-evaporator loop heat pipe prototype with a dual-layer condenser was designed,which can ensure the uniform and symmetrical layout of pipelines.The working temperature was 20℃,and propylene was used as the working fluid.The performance of the same evaporator in a single-loop LHP was considered as a reference.The experiment was conducted under two heating modes,i.e.single-evaporator heating and multi-evaporator heating,and the working stability of the prototype was verified by applying periodic heating power change and adverse elevation condition.It was observed that the prototype can be successfully started in different heating modes with a heat transfer limit of 230 W.In the test,the four loops were different in heat transfer limit due to the differences of flow resistance,and less power distribution to the loop with lowest heat transfer limit was considered to be beneficial to the prototype’s performance.Meanwhile,the prototype showed good heat sharing characteristic as the maximum temperature difference is low(smaller than 2 K in single-evaporator heating mode and 0.5 K in multi-evaporator heating mode).The prototype was of good operational reliability and found to be adaptable to the adverse elevation and cyclic variation of the heating power to a certain extent.
基金the National Natural Science Foundation of China(Grant No.11872315).
文摘By impacting a concave dual-layer liquid(with the oil and the dyed water)surface in a test tube,a compound jet with a water core and an oil shell is generated.The velocities of the jet's head(Vj)and the oil-water interface(Vj')are experimentally determined against the initial thickness and the viscosity of the upper layer liquid.The results show that the oil-water interface can be roughly regarded as a pure material surface,whose velocity can be determined from the jet velocity and the initial location(or the film thickness).Furthermore,the effective density,viscosity and surface tension of the compound jet are used to evaluate the jetting velocity.The previous scaling relation for a single liquid jet can be used to give a good prediction with the effective quantities.The results of this paper can be used for the compound jet/droplet preparation.
文摘Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500℃-700℃ and n(Ca)/n(Cl)molar ratios of 1.0-5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH)2. Mainly, the adsorption efficiency of HCI and utilization efficiency of Calcium were studied, by varying relevant factors including n(Ca)/n(Cl), tempera- ture, feeding method, water vapor and CO2. With a relatively higher HCl concentration of 1000ppm, the experimental results revealed that 600℃ may be the optimum temperature for HCl adsorption when optimum n (Ca)/n(Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with n(Ca)/n(Cl) = 2.5 at 600℃. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO2, and the utilization efficiency of calcium could be up to 74.4% without CO2, while was only 36.8% with CO2 when n(Ca)/n(Cl) was 2.5 at 600℃.
基金supported by the International S&T Cooperation Program of China(2006DFB02020)the National Basic Research Program of China(2007CB936800 and 2009CB930704)the Hundred Talents Program of the Chinese Academy of Sciences.
文摘Dual-layer Metallic grating(DMG)structures as surface-enhanced Raman scattering(SERS)substrates are studied using benzenethiol as the probe analyte.The DMG structure consists of a SiO2 grating and 100-nm-thick gold coating layers.An enhancement factor of 105 is achieved by optimizing the SiO 2 grating height within the range from 165 to 550 nm.The enhancement factor dependence on the SiO2 grating height is due to the surface plasmon excitation,which is dependent on the polarization of the incident light,and confirmed by finite difference time domain simulations.This study demonstrates the advantages of high uniformity,reproducibility and sensitivity in the DMG structures for SERS applications.