期刊文献+
共找到35,858篇文章
< 1 2 250 >
每页显示 20 50 100
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
1
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
Investigation of spatiotemporal distribution and formation mechanisms of ozone pollution in eastern Chinese cities applying convolutional neural network 被引量:1
2
作者 Qiaoli Wang Dongping Sheng +7 位作者 Chengzhi Wu Xiaojie Ou Shengdong Yao Jingkai Zhao Feili Li Wei Li Jianmeng Chen 《Journal of Environmental Sciences》 2025年第2期126-138,共13页
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ... Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution. 展开更多
关键词 OZONE Spatiotemporal distribution convolutional neural network Ozone formation rules Incremental reactivity
原文传递
Identification and distribution patterns of the ultra-deep small-scale strike-slip faults based on convolutional neural network in Tarim Basin,NW China 被引量:1
3
作者 Hao Li Jun Han +4 位作者 Cheng Huang Lian-Bo Zeng Bo Lin Ying-Tao Yao Yi-Chen Song 《Petroleum Science》 2025年第8期3152-3167,共16页
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco... The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents. 展开更多
关键词 Small-scale strike-slip faults convolutional neural network Fault label Isolated fracture-vug system Distribution patterns
原文传递
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
4
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
5
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
6
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
7
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Aspect-Level Sentiment Analysis of Bi-Graph Convolutional Networks Based on Enhanced Syntactic Structural Information
8
作者 Junpeng Hu Yegang Li 《Journal of Computer and Communications》 2025年第1期72-89,共18页
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep... Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter. 展开更多
关键词 Aspect-Level Sentiment Analysis Sentiment Knowledge Multi-Head Attention Mechanism Graph convolutional Networks
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:1
9
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network
10
作者 Tajinder Kumar Sarbjit Kaur +4 位作者 Purushottam Sharma Ankita Chhikara Xiaochun Cheng Sachin Lalar Vikram Verma 《Computers, Materials & Continua》 2025年第6期5219-5234,共16页
During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farm... During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farmers’income if not identified early.Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves.This is an excellent use case for Community Assessment and Treatment Services(CATS)due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.An alternative to conventional Machine Learning(ML)methods,which require manual identification of parameters for exact results,is to develop a prototype that can be classified without pre-processing.To automatically diagnose tomato leaf disease,this research proposes a hybrid model using the Convolutional Auto-Encoders(CAE)network and the CNN-based deep learning architecture of DenseNet.To date,none of the modern systems described in this paper have a combined model based on DenseNet,CAE,and ConvolutionalNeuralNetwork(CNN)todiagnose the ailments of tomato leaves automatically.Themodelswere trained on a dataset obtained from the Plant Village repository.The dataset consisted of 9920 tomato leaves,and the model-tomodel accuracy ratio was 98.35%.Unlike other approaches discussed in this paper,this hybrid strategy requires fewer training components.Therefore,the training time to classify plant diseases with the trained algorithm,as well as the training time to automatically detect the ailments of tomato leaves,is significantly reduced. 展开更多
关键词 Tomato leaf disease deep learning DenseNet-121 convolutional autoencoder convolutional neural network
在线阅读 下载PDF
A Hyperspectral Image Classification Based on Spectral Band Graph Convolutional and Attention⁃Enhanced CNN Joint Network
11
作者 XU Chenjie LI Dan KONG Fanqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期102-120,共19页
Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the... Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data. 展开更多
关键词 hyperspectral classification spectral band graph convolutional network attention-enhance convolutional network dynamic attention feature extraction feature fusion
在线阅读 下载PDF
Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring
12
作者 Seulki Han Sangho Son +1 位作者 Won Sakong Haemin Jung 《Computers, Materials & Continua》 2025年第11期2893-2912,共20页
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic... As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data. 展开更多
关键词 Anomaly detection DDoS attack detection convolutional autoencoder
在线阅读 下载PDF
Study on separation identification of cement stabilized crushed stone mixture based on convolutional neural network
13
作者 Qingyi Xiao Miaomiao Zhu +2 位作者 Zhenchao Zhao Xinyu Zhao Fangyuan Gong 《Journal of Road Engineering》 2025年第3期353-377,共25页
With the vigorous development of China's transportation industry,the mileage of high-grade highways based on semi rigid base layers has been increasing year by year.However,the commonly used material for semi rigi... With the vigorous development of China's transportation industry,the mileage of high-grade highways based on semi rigid base layers has been increasing year by year.However,the commonly used material for semi rigid base layers,cement stabilized crushed stone mixture(hereinafter referred to as water stabilized mixture),often experiences segregation during mixing,transportation,and paving.Separation of water stabilized mixture can greatly reduce the service life of roads and cause damage to people's property,the traditional separation detection method that relies on manual experience has problems of low detection efficiency and low recognition accuracy.In order to solve these problems and assist in the modernization of road construction,this article proposes a separation recognition method for water stabilized mixtures based on deep learning.Firstly,a database of segregation diseases of water stabilized mixture was built.Secondly,the control tests were set up by standard fine-tuning and feature extraction,and four different optimizers were set up respectively.By comparing accuracy,loss,precision,recall and F1-score at the end of the pre-trained network,the overall recognition effect of ResNet-101 as the network model was better.Thirdly,the ResNet-101 model was optimized by SpotTune,replacing cross entropy loss with focus loss,adding PReLU to the pre-trained network and a BN layer to the top layer of the pre-trained network,and using 1×1.Convolutional replacement of the fully connected layer.Finally,build a web side water stabilized mixture segregation recognition platform,and its stability was verified in practical engineering. 展开更多
关键词 Cement-stabilized macadam SEGREGATION convolutional neural network Image recognition
在线阅读 下载PDF
Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features
14
作者 Tao Liu Jianliang Wang +7 位作者 Jiayi Wang Yuanyuan Zhao Hui Wang Weijun Zhang Zhaosheng Yao Shengping Liu Xiaochun Zhong Chengming Sun 《Journal of Integrative Agriculture》 2025年第4期1403-1423,共21页
The wheat above-ground biomass(AGB)is an important index that shows the life activity of vegetation,which is of great significance for wheat growth monitoring and yield prediction.Traditional biomass estimation method... The wheat above-ground biomass(AGB)is an important index that shows the life activity of vegetation,which is of great significance for wheat growth monitoring and yield prediction.Traditional biomass estimation methods specifically include sample surveys and harvesting statistics.Although these methods have high estimation accuracy,they are time-consuming,destructive,and difficult to implement to monitor the biomass at a large scale.The main objective of this study is to optimize the traditional remote sensing methods to estimate the wheat AGBbased on improved convolutional features(CFs).Low-cost unmanned aerial vehicles(UAV)were used as the main data acquisition equipment.This study acquired image data acquired by RGB camera(RGB)and multi-spectral(MS)image data of the wheat population canopy for two wheat varieties and five key growth stages.Then,field measurements were conducted to obtain the actual wheat biomass data for validation.Based on the remote sensing indices(RSIs),structural features(SFs),and CFs,this study proposed a new feature named AUR-50(multi-source combination based on convolutional feature optimization)to estimate the wheat AGB.The results show that AUR-50 could estimate the wheat AGB more accurately than RSIs and SFs,and the average R^(2) exceeded 0.77.In the overwintering period,AUR-50_(MS)(multi-source combination with convolutional feature optimization using multispectral imagery)had the highest estimation accuracy(R^(2) of 0.88).In addition,AUR-50 reduced the effect of the vegetation index saturation on the biomass estimation accuracy by adding CFs,where the highest R^(2) was 0.69 at the flowering stage.The results of this study provide an effective method to evaluate the AGB in wheat with high throughput and a research reference for the phenotypic parameters of other crops. 展开更多
关键词 WHEAT above-ground biomass UAV entire growth stage convolutional feature
在线阅读 下载PDF
Photonic Chip Based on Ultrafast Laser-Induced Reversible Phase Change for Convolutional Neural Network
15
作者 Jiawang Xie Jianfeng Yan +5 位作者 Haoze Han Yuzhi Zhao Ma Luo Jiaqun Li Heng Guo Ming Qiao 《Nano-Micro Letters》 2025年第8期53-66,共14页
Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips... Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips have attracted wide research attention on performing convolutional neural network algorithm.Programmable photonic chips are vital for achieving practical applications of photonic computing.Herein,a programmable photonic chip based on ultrafast laser-induced phase change is fabricated for photonic computing.Through designing the ultrafast laser pulses,the Sb film integrated into photonic waveguides can be reversibly switched between crystalline and amorphous phase,resulting in a large contrast in refractive index and extinction coefficient.As a consequence,the light transmission of waveguides can be switched between write and erase states.To determine the phase change time,the transient laser-induced phase change dynamics of Sb film are revealed at atomic scale,and the time-resolved transient reflectivity is measured.Based on the integrated photonic chip,photonic convolutional neural networks are built to implement machine learning algorithm,and images recognition task is achieved.This work paves a route for fabricating programmable photonic chips by designed ultrafast laser,which will facilitate the application of photonic computing in artificial intelligence. 展开更多
关键词 Photonic chip Ultrafast laser Phase change convolutional neural network
在线阅读 下载PDF
Co-DeepNet:A Cooperative Convolutional Neural Network for DNA Methylation-Based Age Prediction
16
作者 Najmeh Sadat Jaddi Mohammad Saniee Abadeh +4 位作者 Niousha Bagheri Khoulenjani Salwani Abdullah MohammadMahdi Ariannejad Mohd Zakree Ahmad Nazri Fatemeh Alvankarian 《CAAI Transactions on Intelligence Technology》 2025年第4期1118-1134,共17页
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d... Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis. 展开更多
关键词 age prediction convolutional neural network COOPERATIVE genetic algorithm knowledge transmission
在线阅读 下载PDF
Dual-channel graph convolutional network with multi-order information fusion for skeleton-based action recognition
17
作者 JIANG Tao HU Zhentao +2 位作者 WANG Kaige QIU Qian REN Xing 《High Technology Letters》 2025年第3期257-265,共9页
Skeleton-based human action recognition focuses on identifying actions from dynamic skeletal data,which contains both temporal and spatial characteristics.However,this approach faces chal-lenges such as viewpoint vari... Skeleton-based human action recognition focuses on identifying actions from dynamic skeletal data,which contains both temporal and spatial characteristics.However,this approach faces chal-lenges such as viewpoint variations,low recognition accuracy,and high model complexity.Skeleton-based graph convolutional network(GCN)generally outperform other deep learning methods in rec-ognition accuracy.However,they often underutilize temporal features and suffer from high model complexity,leading to increased training and validation costs,especially on large-scale datasets.This paper proposes a dual-channel graph convolutional network with multi-order information fusion(DM-AGCN)for human action recognition.The network integrates high frame rate skeleton chan-nels to capture action dynamics and low frame rate channels to preserve static semantic information,effectively balancing temporal and spatial features.This dual-channel architecture allows for separate processing of temporal and spatial information.Additionally,DM-AGCN extracts joint keypoints and bidirectional bone vectors from skeleton sequences,and employs a three-stream graph convolu-tional structure to extract features that describe human movement.Experimental results on the NTU-RGB+D dataset demonstrate that DM-AGCN achieves an accuracy of 89.4%on the X-Sub and 95.8%on the X-View,while reducing model complexity to 3.68 GFLOPs(Giga Floating-point Oper-ations Per Second).On the Kinetics-Skeleton dataset,the model achieves a Top-1 accuracy of 37.2%and a Top-5 accuracy of 60.3%,further validating its effectiveness across different benchmarks. 展开更多
关键词 human action recognition graph convolutional network spatiotemporal fusion feature extraction
在线阅读 下载PDF
An Advanced Medical Diagnosis of Breast Cancer Histopathology Using Convolutional Neural Networks
18
作者 Ahmed Ben Atitallah Jannet Kamoun +3 位作者 Meshari D.Alanazi Turki M.Alanazi Mohammed Albekairi Khaled Kaaniche 《Computers, Materials & Continua》 2025年第6期5761-5779,共19页
Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limita... Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limitations that reduce their accessibility and accuracy.This study investigates the use ofConvolutionalNeuralNetworks(CNNs)to enhance the diagnostic process of BC histopathology.Utilizing the BreakHis dataset,which contains thousands of histopathological images,we developed a CNN model designed to improve the speed and accuracy of image analysis.Our CNN architecture was designed with multiple convolutional layers,max-pooling layers,and a fully connected network optimized for feature extraction and classification.Hyperparameter tuning was conducted to identify the optimal learning rate,batch size,and number of epochs,ensuring robust model performance.The dataset was divided into training(80%),validation(10%),and testing(10%)subsets,with performance evaluated using accuracy,precision,recall,and F1-score metrics.Our CNN model achieved a magnification-independent accuracy of 97.72%,with specific accuracies of 97.50%at 40×,97.61%at 100×,99.06%at 200×,and 97.25%at 400×magnification levels.These results demonstrate the model’s superior performance relative to existing methods.The integration of CNNs in diagnostic workflows can potentially reduce pathologist workload,minimize interpretation errors,and increase the availability of diagnostic testing,thereby improving BC management and patient survival rates.This study highlights the effectiveness of deep learning in automating BC histopathological classification and underscores the potential for AI-driven diagnostic solutions to improve patient care. 展开更多
关键词 HISTOPATHOLOGY breast cancer convolutional neural networks BreakHis dataset medical imaging healthcare technology
暂未订购
Efficient Fully Convolutional Network and Optimization Approach for Robotic Grasping Detection Based on RGB-D Images
19
作者 NIE Wei LIANG Xinwu 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期399-416,共18页
Robot grasp detection is a fundamental vision task for robots.Deep learning-based methods have shown excellent results in enhancing the grasp detection capabilities for model-free objects in unstructured scenes.Most p... Robot grasp detection is a fundamental vision task for robots.Deep learning-based methods have shown excellent results in enhancing the grasp detection capabilities for model-free objects in unstructured scenes.Most popular approaches explore deep network models and exploit RGB-D images combining colour and depth data to acquire enriched feature expressions.However,current work struggles to achieve a satisfactory balance between the accuracy and real-time performance;the variability of RGB and depth feature distributions receives inadequate attention.The treatment of predicted failure cases is also lacking.We propose an efficient fully convolutional network to predict the pixel-level antipodal grasp parameters in RGB-D images.A structure with hierarchical feature fusion is established using multiple lightweight feature extraction blocks.The feature fusion module with 3D global attention is used to select the complementary information in RGB and depth images suficiently.Additionally,a grasp configuration optimization method based on local grasp path is proposed to cope with the possible failures predicted by the model.Extensive experiments on two public grasping datasets,Cornell and Jacquard,demonstrate that the approach can improve the performance of grasping unknown objects. 展开更多
关键词 deep learning object grasping detection fully convolutional neural network robot vision
原文传递
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
20
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 Graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部