期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Top-Down Dual-Interface Carrier Management for Highly Efficient and Stable Perovskite/Silicon Tandem Solar Cells
1
作者 Xin Li Zhiqin Ying +11 位作者 Shuo Li Lei Chen Meili Zhang Linhui Liu Xuchao Guo Jun Wu Yihan Sun Chuanxiao Xiao Yuheng Zeng Jian Wu Xi Yang Jichun Ye 《Nano-Micro Letters》 2025年第6期349-368,共20页
Despite significant advancements in the power conversion efficiency(PCE)of perovskite/silicon tandem solar cells,improving carrier management in top cells remains challenging due to the defective dual interfaces of wi... Despite significant advancements in the power conversion efficiency(PCE)of perovskite/silicon tandem solar cells,improving carrier management in top cells remains challenging due to the defective dual interfaces of wide-bandgap perovskite,particularly on textured silicon surfaces.Herein,a series of halide ions(Cl^(-),Br^(-),I^(-))substituted piperazinium salts are designed and synthesized as post-treatment modifiers for perovskite surfaces.Notably,piperazinium chloride induces an asymmetric bidirectional ions distribution from the top to the bottom surface,with large piperazinium cations concentrating at the perovskite surface and small chloride anions migrating downward to accumulate at the buried interface.This results in effective dual-interface defect passivation and energy band modulation,enabling wide-bandgap(1.68 eV)perovskite solar cells to achieve a PCE of 22.3%and a record product of open-circuit voltage×fill factor(84.4%relative to the Shockley-Queisser limit).Furthermore,the device retains 91.3%of its initial efficiency after 1200 h of maximum power point tracking without encapsulation.When integrated with double-textured silicon heterojunction solar cells,a remarkable PCE of 31.5%is achieved for a 1.04 cm^(2) monolithic perovskite/silicon tandem solar cell,exhibiting excellent long-term operational stability(T_(80)=755 h)without encapsulation in ambient air.This work provides a convenient strategy on dual-interface engineering for making high-efficiency and stable perovskite platforms. 展开更多
关键词 Perovskite/silicon tandem solar cells Carrier management dual-interface POST-TREATMENT
在线阅读 下载PDF
Dual-interface built-in electric fields induced by sulfidation-driven ordered arrays in MoS_(2)@C/CoSₓfor high-efficiency microwave absorption
2
作者 Hao Wang Jiarui Zhao Zhen Wang 《Nano Research》 2025年第11期631-642,共12页
Rational design of hierarchical structures and a dual-interface built-in electric field(BIEF)are vital for enhancing dielectric loss and directional charge transport in microwave absorption materials(MAMs).Herein,we p... Rational design of hierarchical structures and a dual-interface built-in electric field(BIEF)are vital for enhancing dielectric loss and directional charge transport in microwave absorption materials(MAMs).Herein,we propose a dual-interface BIEF engineering strategy to construct a multifunctional MoS_(2)@C/CoS_(x)composites.Inspired by the spiderweb hunting mechanism,magnetic Co-based Prussian blue(PB)is electro spun with polyacrylonitrile to form Co@CoO/C nanofibers,followed by sulfidation to induce ordered array architectures.The structural evolution enables the formation of heterogeneous MoS_(2)-CoSx-C interfaces and modulates the interfacial electric field intensity to enhance dielectric polarization.Density functional theory(DFT)calculations confirm that the work function difference(ΔΦ)of C/CoS_(2)/MoS_(2) is 6.179 eV,which indicates that the differencesΔΦamong MoS_(2),CoS_(x)and C components drive the spontaneous formation of dual-interface BIEF.This facilitates directional charge migration and strong dipolar/interface polarization,significantly improving the microwave attenuation capability.Benefiting from this design,the composite achieves a minimum reflection loss(RL_(min))of-63.83 dB and a maximum effective absorption bandwidth(EAB_(max))of 6.96 GHz,covering both C and Ku bands.In addition,the material reveals excellent infrared stealth performance due to its unique spiderweb-inspired ordered array structure.This study provides new insights into interfacial electric field modulation and a generalizable approach for designing multi-band and tunable microwave absorbers with synergistic electromagnetic and thermal stealth functions. 展开更多
关键词 Prussian blue(PB) HETEROSTRUCTURE dual-interface built-in electric field(BIEF) dielectric response microwave absorption(MA)performance
原文传递
LiF and LiNO_(3) as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dualinterfaces stability 被引量:8
3
作者 Liansheng Li Yuanfu Deng +2 位作者 Huanhuan Duan Yunxian Qian Guohua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期319-328,共10页
Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode si... Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode side are essential for high-voltage all-solid-state lithium batteries(ASSLBs)to achieve excellent cycle stability.In this work,a novel strategy of using LiF and LiNO_(3) as synergistic additives to boost the performance of PEO-PVDF/LLZTO-based composite solid electrolytes(CSEs)is developed,which also promotes the assembled high-voltage ASSLBs with dual-interfaces stability characteristic.Specifically,LiF as an inactive additive can increase the electrochemical stability of the CSE under high cut-off voltage,and improve the high-voltage compatibility between cathode and CSE,thus leading to a stable cathode/CSE interface.LiNO_(3) as an active additive can lead to an enhanced ionic conductivity of CSE due to the increased free-mobile Li+and ensure a stable CSE/Li interface by forming stable solid electrolyte interphase(SEI)on Li anode surface.Benefiting from the improved performance of CSE and stable dualinterfaces,the assembled NCM622/9[PEO_(15)-LiTFSI]-PVDF-15 LLZTO-2 LiF-3 LiNO_(3)/Li cell delivers a high rate capacity of 102.1 mAh g^(-1) at 1.0 C and a high capacity retention of 77.4%after 200 cycles at 0.5 C,which are much higher than those of the ASSLB assembled with additive-free CSE,with only 60.0 mAh g^(-1) and 52.0%,respectively.Furthermore,novel cycle test modes of resting for 5 h at different charge states after every 5 cycles are designed to investigate the high-voltage compatibility between cathode and CSE,and the results suggest that LiF additive can actually improve the high-voltage compatibility of cathode and CSE.All the obtained results confirm that the strategy of using synergistic additives in CSE is an effective way to achieve high-voltage ASSLBs with dual-interfaces stability. 展开更多
关键词 Synergistic additives Composite solid electrolyte dual-interfaces stability High-voltage cathode Lithium metal battery
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部