期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
A dual-functional capsule robot for drug delivery and tissue biopsy based on magnetic torsion spring technology 被引量:2
1
作者 Qing Cao Yue Pan +5 位作者 Yangqianhui Zhang Yuning Jiang Guofang Gong Huayong Yang Fuzhou Niu Dong Han 《Bio-Design and Manufacturing》 2025年第3期495-510,I0062,共17页
Wireless capsule endoscopy(WCE)has the potential to fully replace conventional wired counterparts for its low invasiveness.Recent studies have attempted to expand the functions of capsules toward this goal.However,lim... Wireless capsule endoscopy(WCE)has the potential to fully replace conventional wired counterparts for its low invasiveness.Recent studies have attempted to expand the functions of capsules toward this goal.However,limitations in space and energy supply have resulted in the inability to perform multiple diagnostic and treatment tasks using a single capsule.In this study,we developed a dual-functional capsule robot(DFCR)for drug delivery and tissue biopsy based on magnetic torsion spring technology.The delivery module was shown to rotate the push rod with a thrust of 894 mN to release approximately 0.3 mL of semisolid drug.The biopsy module used a built-in blade to cut tissue with a shear stress of 22.87 MPa,producing a sample of approximately 1.8 mm3.Additionally,a five-degree-of-freedom permanent magnet drive system was developed.By adjusting the strength of the unidirectional magnetic field generated by an external magnet,the capsule can be wirelessly controlled to sequentially trigger the two functions.Ex vivo tests on porcine stomachs confirmed the feasibility of the prototype capsule(12 mm in diameter and 45 mm in length)in active movement,medication,and tissue biopsy.The newly developed DFCR further expands the clinical application prospects of WCE robots in minimally invasive surgery. 展开更多
关键词 Wireless capsule endoscopy(WCE) dual-functional capsule robot(DFCR) Magnetic torsion spring(MTS) Drug delivery Tissue biopsy Permanent magnet
在线阅读 下载PDF
Synergistic hydrogen production and organic pollutant removal via dual-functional photocatalytic systems
2
作者 Bin Han Xiangcheng Shan +7 位作者 Hui Xue Fuyu Liu Xiaoyang Song Jiarui Kong Qiupei Lei Yingjun Wang Dongling Ma Qingzhe Zhang 《Journal of Environmental Sciences》 2025年第7期202-216,共15页
Photocatalytic water splitting is a promising way to produce H_(2),a green and clean energy source.However,efficient H_(2) production typically relies on the addition of electron donors,such as alcohols and acids,whic... Photocatalytic water splitting is a promising way to produce H_(2),a green and clean energy source.However,efficient H_(2) production typically relies on the addition of electron donors,such as alcohols and acids,which are neither environmentally friendly nor cost-effective.Recently,we have witnessed a surge of studies in coupling photocatalytic H_(2) evolution with organic pollutant oxidation,which significantly promotes charge separation and improves the overall photocatalytic efficiency.It is thus an opportune time to critically assess the recent literature concerning dual-functional photocatalytic systems and provide perspectives for its future development.In this minireview,we begin with the working principles and requirements for synergistic photocatalytic systems.We then summarize and critically discuss the recent advances in photocatalytic H_(2) production and the degradation of various organic pollutants,including antibiotics,dyes,and phenols.Finally,we discuss the current challenges and suggest future directions for this field. 展开更多
关键词 dual-functional photocatalysis Pollutant removal Water remediation H_(2)evolution Clean energy
原文传递
Performance optimization and parameters estimation for MIMO-OFDM dual-functional communication-radar systems 被引量:1
3
作者 Chen Zhong Mengting Lou +2 位作者 Chunrong Gu Lan Tang Yechao Bai 《Digital Communications and Networks》 2025年第2期387-400,共14页
Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multip... Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multiple-Output(MIMO)Orthogonal Frequency Division Multiplexing(OFDM)signals as integrated signals and investigate the estimation performance of MIMO-OFDM signals.First,we analyze the Cramer-Rao Lower Bound(CRLB)of parameter estimation.Then,the transmit powers over different subcarriers are optimized to achieve the best tradeoff between the transmission rate and the estimation performance.Finally,we propose a more accurate estimation method that uses Canonical Polyadic Decomposition(CPD)of the third-order tensor to obtain the parameter matrices.Due to the characteristic of the column structure of the parameter matrices,we only need to use DFT/IDFT to recover the parameters of multiple targets.The simulation results show that tensor-based estimation method can achieve a performance close to CRLB,and the estimation performance can be improved by optimizing the transmit powers. 展开更多
关键词 Bistatic dual-function communication-radar systems MIMO-OFDM CRLB Power allocation CPD
在线阅读 下载PDF
A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode 被引量:7
4
作者 Hao Chen Zhenzhen Wu +4 位作者 Zhong Su Luke Hencz Su Chen Cheng Yan Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期127-135,I0003,共10页
Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large... Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large volume change and active material loss in lithium-ion batteries during prolonged cycles. Herein, a hydrophilic polymer poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was explored as a dual-functional aqueous binder for the preparation of high-performance silicon anode and sulfur cathode. Benefiting from the dual functions of PMVEMA, i.e., the excellent dispersion ability and strong binding forces, the as-prepared electrodes exhibit improved capacity, rate capability and long-term cycling performance. In particular, the as-prepared Si electrode delivers a high initial discharge capacity of 1346.5 mAh g^(−1) at a high rate of 8.4 A/g and maintains 834.5 mAh g^(−1) after 300 cycles at 4.2 A/g, while the as-prepared S cathode exhibits enhanced cycling performance with high remaining discharge capacities of 663.4 mAh g^(−1) after 100 cycles at 0.2 C and 487.07 mAh g^(−1) after 300 cycles at 1 C, respectively. These encouraging results suggest that PMVEMA could be a universal binder to facilitate the green manufacture of both anode and cathode for high-capacity energy storage systems. 展开更多
关键词 dual-functional Aqueous binder Silicon anode Sulfur cathode Lithium-ion batteries Lithium-sulfur batteries
在线阅读 下载PDF
High efficiency photothermal cyclic self-healing antibacterial coating based on in-situ dual-functional BiOI@Bi_(2)S_(3) 被引量:7
5
作者 Huimeng Feng Tong Wang +3 位作者 Wei Wang Chengcheng Ma Yanan Pu Shougang Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第6期121-136,共16页
Although extremely challenging,it is highly desirable to develop self-healing materials that exhibit high efficiency under environmental conditions for marine protection applications.In this work,polyurethane elastome... Although extremely challenging,it is highly desirable to develop self-healing materials that exhibit high efficiency under environmental conditions for marine protection applications.In this work,polyurethane elastomers with hydrogen bond and dimethylglyoxime-urethane(DOU)coordination complex were combined with in-situ dual-functional BiOI@Bi_(2)S_(3) to synthesize high-efficiency photothermal cyclic self-healing antibacterial coating.The photothermal efficiency of BiOI@Bi_(2)S_(3) is improved by 38% through interfacial regulation.BiOI@Bi_(2)S_(3)/PU rapidly rises by 50.2℃ within 300 s under near-infrared(NIR)light,which can trigger the hydrogen bond of polyurethane coating and recover the barrier properties of the coating through self-healing.Density functional theory was used to simulate and analyze the generation of multiple electron transfer paths after the vulcanization of BiOI,which improves the interfacial mobility of photogenerated carriers and generates more heat.Importantly,molecular dynamics verified the self-healing mechanism of hydrogen bond and the photothermal lifting mechanism of the coating.After 5th scratches and self-healing cycle tests,the coating has a self-healing efficiency of more than 80%,which can ensure the self-healing and anticorrosion protection performance of the coating for multiple cycles.The photocatalytic and photothermal properties of BiOI@Bi_(2)S_(3) enhance the antibacterial rate of the coating up to 99%.This work provides heuristic perspectives for the design of coatings with anti-corrosion,antibacterial and self-healing properties. 展开更多
关键词 SELF-HEALING PHOTOTHERMAL Interfacial regulation dual-functional BiOI@Bi_(2)S_(3) Antibacterial
原文传递
Rational design of MoS_(2) nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li–S batteries 被引量:8
6
作者 Qinjun Shao Pengfei Lu +4 位作者 Lei Xu Decai Guo Jing Gao Zhong Shuai Wu jian Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期262-271,共10页
Developing sulfur cathodes with high catalytic activity on accelerating the sluggish redox kinetics of lithium polysulfides(Li PSs) and unveiling their mechanisms are pivotal for advanced lithium–sulfur(Li–S)batteri... Developing sulfur cathodes with high catalytic activity on accelerating the sluggish redox kinetics of lithium polysulfides(Li PSs) and unveiling their mechanisms are pivotal for advanced lithium–sulfur(Li–S)batteries. Herein, MoS2 is verified to reduce the Gibbs free energy for rate-limiting step of sulfur reduction and the dissociation energy of lithium sulfide(Li2 S) for the first time employing theoretical calculations. The Mo S2 nanosheets coated on mesoporous hollow carbon spheres(MHCS) are then reasonably designed as a sulfur host for high-capacity and long-life Li–S battery, in which MHCS can guarantee the high sulfur loading and fast electron/ion transfer. It is revealed that the shuttle effect is efficiently inhibited because of the boosted conversion of Li PSs. As a result, the coin cell based on the MHCS@Mo S2-S cathode exhibits stable cycling performance maintaining 735.7 mAh g^(-1) after 500 cycles at 1.0 C. More importantly, the pouch cell employing the MHCS@Mo S2-S cathodes achieves high specific capacity of1353.2 m Ah g^(-1) and prominent cycle stability that remaining 960.0 m Ah g^(-1) with extraordinary capacity retention of 79.8% at 0.1 C after 170 cycles. Therefore, this work paves a new avenue for developing practical high specific energy and long-life pouch-type Li–S batteries. 展开更多
关键词 Lithium sulfur batteries MoS_(2) dual-functional accelerator Pouch cell
在线阅读 下载PDF
Mechanically robust antifouling coating with dual-functional antifouling strategy by infiltrating PDMS into plasma-sprayed porous Al_(2)O_(3)-Cu coating 被引量:5
7
作者 Shuaiqiang Bi Kangwei Xu +2 位作者 Guosheng Shao Ke Yang Jiajia Tian 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期125-137,共13页
Marine biofouling is a worldwide challenge that needs to be solved urgently.Poly(dimethylsiloxane)(PDMS)-based fouling release coatings with low surface free energy(SFE)could effectively inhibit bio-fouling.Neverthele... Marine biofouling is a worldwide challenge that needs to be solved urgently.Poly(dimethylsiloxane)(PDMS)-based fouling release coatings with low surface free energy(SFE)could effectively inhibit bio-fouling.Nevertheless,their poor mechanical durability,adhesive strength,and antifouling performance under static conditions significantly limit their applications.Herein,a novel mechanically robust Al_(2)O_(3)-PDMS-Cu composite coating with strong adhesive strength and remarkable antifouling performance was developed.The Al_(2)O_(3)-PDMS-Cu coating loaded with a small amount of Cu was fabricated by infiltrating PDMS into plasma-sprayed micro/nano-scaled porous Al_(2)O_(3)-Cu coating.Results showed that the fabri-cation of this Al_(2)O_(3)-PDMS-Cu coating did not alter the surface hydrophobicity and SFE of PDMS signif-icantly,thus presenting little influence on its inherent fouling release property.After rigorous abrasion test,the Al_(2)O_(3)-PDMS-Cu coating presented remarkably improved surface hydrophobicity due to the ex-posure of micro/nano structure,rather than falling offas that of PDMS coating.The combination of excel-lent abrasion resistance and one order of magnitude higher adhesive strength and hardness than PDMS coating contributed to the outstanding mechanical robustness of Al_(2)O_(3)-PDMS-Cu coating.Additionally,the antifouling assays against marine bacteria adhesion(95%reduction rate for Escherichia coli.(E.coli))and algae attachment(96%and 94%reduction rates for Chlorella and Phaeodactylum tricornutum(P.tricor-nutum),respectively after 21 days of incubation)demonstrated the superior antifouling performance of the Al_(2)O_(3)-PDMS-Cu coating.Thus,a high-performance Al_(2)O_(3)-PDMS-Cu antifouling coating with excellent mechanical robustness and long-term antifouling performance was achieved via the combination of me-chanical durability of Al_(2)O_(3)skeleton and the dual-functional antifouling strategy,i.e.,the fouling release property of PDMS and fouling resistance of Cu. 展开更多
关键词 Marine antifouling Al_(2)O_(3)-PDMS-Cu composite coating Plasma spraying Mechanical robustness dual-functional strategy Long-lasting antifouling
原文传递
Dual-functional photocatalysis boosted by electrostatic assembly of porphyrinic metal-organic framework heterojunction composites with CdS quantum dots 被引量:4
8
作者 Zhiyao Chen Sihong Li +2 位作者 Qijie Mo Li Zhang Cheng-Yong Su 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第9期165-170,共6页
Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy.In detail,H2production coupled with benzylamine oxidation can remarkably lower the cost by replacin... Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy.In detail,H2production coupled with benzylamine oxidation can remarkably lower the cost by replacing sacrificial agents.In this work,Cd S quantum dots(Cd S QDs)were successfully loaded onto the surface of a porphyrinic metal-organic framework(Pd-PCN-222)by the electrostatic selfassembly at room temperature.The consequent Pd-PCN-222/CdS heterojunction composites displayed superb photocatalytic activity under visible light irradiation,achieving a H2production and benzylamine oxidation rate of 5069 and 3717μmol g^(-1)h^(-1)with>99%selectivity in 3 h.There is no noticeable loss of catalytic capability during three successive runs.Mechanistic studies by in situ electron spin resonance and X-ray photoelectron spectroscopy disclosed that CdS QDs injected photoexcited electrons to Pd-PCN-222 and then Zr6clusters under visible-light irradiation,and thus Cd S QDs and Zr6clusters behave as the photocatalytic oxidation and reduction centers,respectively. 展开更多
关键词 Metal-organic framework composites Electrostatic self-assembly dual-functional photocatalysis CdS quantum dots METALLOPORPHYRIN
原文传递
Dual-Functional Lithiophilic/Sulfiphilic Binary-Metal Selenide Quantum Dots Toward High-Performance Li-S Full Batteries 被引量:4
9
作者 Youzhang Huang Liang Lin +6 位作者 Yinggan Zhang Lie Liu Baisheng Sa Jie Lin Laisen Wang Dong-Liang Peng Qingshui Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期169-186,共18页
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,... The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries. 展开更多
关键词 dual-functional host Fe_(2)CoSe_(4)quantum dots Shuttle effect Dendrite-free Li anode Li-S full batteries
在线阅读 下载PDF
Bimetallic active site nuclear-shell heterostructure enables efficient dual-functional electrocatalysis in alkaline media 被引量:2
10
作者 Yu Cheng Xi Zhou +3 位作者 Qin-Min Pan Li-Fang Zhang Yu-Feng Cao Tao Qian 《Rare Metals》 SCIE EI CAS CSCD 2023年第9期3024-3033,共10页
Hydrogen,as a green and clean next-generation fuel,is a key to achieving the goal of carbon neutrality.Constructing an electrocatalyst with bifunctional hydrogen evolution and oxygen evolution activity in the same ele... Hydrogen,as a green and clean next-generation fuel,is a key to achieving the goal of carbon neutrality.Constructing an electrocatalyst with bifunctional hydrogen evolution and oxygen evolution activity in the same electrolyte is a key technology for producing hydrogen via water splitting.Herein,a bimetallic active site catalyst,which possessed an edge-riched MoS_(2)nanoflakes array vertically growing on cubic CoS_(2),forming a nuclear-shell heterogeneous configuration,termed CSC-Mo S_(2)@Co S_(2).was reported The optimal CSC-Mo S_(2)@Co S_(2)-24 possessed good dualfunctional electrocatalytic activity(hydrogen evolution(HER),10 m A·cm^(-2)@241.5 m V and oxygen evolution(OER),10 m A·cm^(-2)@350 m V).Especially,CSC-Mo S_(2)@CoS_(2)-24 exhibited an extremely high mass activity for HER,and only required an overpotential of~550 m V when reaching a large current density of 1422 m A·mg^(-1),which was20.6-fold that of the bulk CoS_(2)(69 m A·mg^(-1)),as well as exhibiting stability of up to 100 h.The good electrocatalytic performance was attributed to the nuclear-shell heterostructure of Mo S_(2)@CoS_(2)hybrid could bring critical synergies,improving efficient mass transfer and electron transfer processes between Co S_(2)and Mo S_(2),which collaboratively promoted the electrocatalytic kinetics.It is foreseeable that the method proposed in this work will have guiding value for the preparation of dual-functional electrocatalysts with multi-interface heterostructures by assembling layered sulfides on cubic sulfides. 展开更多
关键词 dual-functional electrocatalysts Nuclearshell cubic heterostructure Edge-riched Bimetallic active site Strong interaction
原文传递
Microwave-assisted synthesis of colorimetric and fluorometric dual-functional hybrid carbon nanodots for Fe^(3+) detection and bioimaging 被引量:1
11
作者 Yupeng Shi Jingjing Liu +3 位作者 Yong Zhang Jianfeng Bao Jingliang Cheng Changqing Yi 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第10期3189-3194,共6页
Carbon nanodots(CDs) based fluorescent nanoprobes have recently drawn much attention in chemo-/bio-sensing and bioimaging.However,it is still challenging to integrate the colorimetric and fluorometric dual readouts in... Carbon nanodots(CDs) based fluorescent nanoprobes have recently drawn much attention in chemo-/bio-sensing and bioimaging.However,it is still challenging to integrate the colorimetric and fluorometric dual readouts into a single CD.Herein,novel hybrid CDs(HCDs) are prepared by a simple microwave-assisted reaction of citric acid(CA),branched polyethyleneimine(BPEI) and potassium thiocyanate(KSCN).As-prepared HCDs show extraordinary properties,including excitation-dependent emission,satisfactory fluorescence quantum yield(46.8%),excellent biocompatibility and optical stability.Significantly,the fluorescence intensity at 450 nm exhibits linear correlation over the Fe^(3+)concentration from 1 mmol/L to 150 mmol/L with a detection limit(LOD) of 52 nmol/L.Meanwhile,the solution color changes from colorless to orange,and the absorbance at 460 nm increased linearly with Fe^(3+)concentration ranging from 0.02 mmol/L to 5 mmol/L(LOD:3.4 mmol/L).All the evidence illustrates that the HCDs can be conditioned for specific Fe^(3+)sensing with colorimetric and fluorometric dual readouts,which has also been verified with paper-based microchips.The possible mechanism is attributed to the specific interactions between surface functional groups on the HCDs and Fe^(3+).Additionally,the HCDs are successfully applied in sensing Fe^(3+)in wastewater and living cells,demonstrating its potential applications in future environment monitoring and disease diagnosis. 展开更多
关键词 Paper-based chip Carbon nanodots COLORIMETRIC Fluorescence Fe^(3+)ions detection dual-functional
原文传递
Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface 被引量:1
12
作者 De-Xian Yan Qin-Yin Feng +4 位作者 Zi-Wei Yuan Miao Meng Xiang-Jun Li Guo-Hua Qiu Ji-Ning Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期324-331,共8页
The terahertz technology has attracted considerable attention because of its potential applications in various fields.However,the research of functional devices,including polarization converters,remains a major demand... The terahertz technology has attracted considerable attention because of its potential applications in various fields.However,the research of functional devices,including polarization converters,remains a major demand for practical applications.In this work,a reflective dual-functional terahertz metadevice is presented,which combines two different polarization conversions through using a switchable metasurface.Different functions can be achieved because of the insulator-to-metal transition of vanadium dioxide(VO_(2)).At room temperature,the metadevice can be regarded as a linear-to-linear polarization convertor containing a gold circular split-ring resonator(CSRR),first polyimide(PI)spacer,continuous VO_(2) film,second PI spacer,and gold substrate.The converter possesses a polarization conversion ratio higher than 0.9 and a bandwidth ratio of 81%in a range from 0.912 THz to 2.146 THz.When the temperature is above the insulator-to-metal transition temperature(approximately 68℃)and VO_(2) becomes a metal,the metasurface transforms into a wideband linear-to-circular polarization converter composed of the gold CSRR,first PI layer,and continuous VO_(2) film.The ellipticity is close to-1,while the axis ratio is lower than 3 dB in a range of 1.07 THz-1.67 THz.The metadevice also achieves a large angle tolerance and large manufacturing tolerance. 展开更多
关键词 metasurface polarization conversion vanadium dioxide dual-functional
原文传递
Highly active and stable Cu_(9)S_(5)-MoS_(2)heterostructures nanocages enabled by dual-functional Cu electrocatalyst with enhanced potassium storage 被引量:1
13
作者 Bao Zhang Baohe Xu +2 位作者 Haozhe Qin Liang Cao Xing Ou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第12期107-116,共10页
The intrinsic poor electrical conductivity,severe dissolution of K x S y intermediates,and inferior conversion reaction reversibility extremely impede the practical application of the transition-metal chalcogenides(TM... The intrinsic poor electrical conductivity,severe dissolution of K x S y intermediates,and inferior conversion reaction reversibility extremely impede the practical application of the transition-metal chalcogenides(TMDs)anode for potassium-ion batteries(PIBs).Herein,a rationally designed Cu_(9)S_(5)/MoS_(2)/C heterostruc-ture hollow nanocage was synthesized with assistance from metal-organic frameworks(MOFs)precursor.During the K-storage process,the homogeneously distributed the sulfiphilic nature of Cu 0 reaction prod-uct could act as a dual-functional catalyst,not only facilitating the rapid charge transfer but also effec-tively anchoring(K x S y)polysulfides,thus boosting K-storage reactions reversibility during the conversion reaction process.When applied as an anode for PIBs,the as-prepared heterostructure exhibits excellent reversible capacity and long cycle lifespan(350.5 mAh g^(-1)at 0.1 A g^(-1)and 0.04%per cycle capacity de-cay at 1 A g^(-1)after 1000 cycles).Additionally,the potassium storage mechanism is distinctly revealed by in-situ characterizations.The nanoarchitecture designing strategy for the advanced electrode in this work could provide vital guidance for relevant energy storage materials. 展开更多
关键词 Nanocage hollow structure Metal-organic frameworks Cu_(9)S_(5)-MoS_(2)heterostructure dual-functional catalyst Potassium-ion batteries
原文传递
Dual-functional MnS_(2)/MnO_(2) heterostructure catalyst for efficient acidic hydrogen evolution reaction and assisted degradation of organic wastewater
14
作者 Wen Kang Zhao Zi Qiang Ma +6 位作者 Jia Yu Zheng Chang Bao Han Kai Ling Zhou Ming Yang Hao De Cai Fang Yi Xia Hui Yan 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期215-224,I0007,共11页
The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC h... The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC heterostructure dual-functional catalysts with ultrathin nanosheets were prepared by a twostep electrodeposition method for efficient acidic hydrogen evolution reaction(HER) and degradation of organic wastewater(such as methylene blue(MB)).The electronic structure of Mn atoms at the MnS_(2)/MnO_(2)-CC heterostructure interface is reconfigured under the joint action of S and O atoms.Theoretical calculations show that the Mn d-band electron distribution in MnS_(2)/MnO_(2)-CC catalyst has higher occupied states near the Fermi level compared to the MnO_(2) and MnS_(2) catalysts,which indicates that MnS_(2)/MnO_(2)-CC catalyst has better electron transfer capability and catalytic activity.The MnS_(2)/MnO_(2)-CC catalysts require overpotential of only 66 and 116 mV to reach current density of 10 and 100 mA cm^(-2)in MB/H_(2)SO_(4) media.The MnS_(2)/MnO_(2)-CC catalyst also has a low Tafel slope(26.72 mV dec^(-1)) and excellent stability(the performance does not decay after 20 h of testing).In addition,the MB removal efficiency of the MnS_(2)/MnO_(2)-CC catalyst with a better kinetic rate(0.0226) can reach 97.76%,which is much higher than that of the MnO_(x)-CC catalyst(72.10%).This strategy provides a new way to develop efficient and stable non-precious metal dual-functional electrocatalysts for HER and organic wastewater degradation. 展开更多
关键词 Hydrogen evolution reaction(HER) dual-functional electrocatalysts HETEROSTRUCTURE Catalytic activity Degradation of organic wastewater
在线阅读 下载PDF
A dual-functional membrane for bisphenol A enrichment and resonance amplification by surface-enhanced Raman scattering
15
作者 Haoyu Lei Yuling Hu Gongke Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第3期509-512,共4页
Bisphenol A (BPA) was one of the environmental hormones that would cause endocrine and metabolic disorders in human or wildlife. This paper proposed a method to detect the trace amounts of BPA in water samples by fu... Bisphenol A (BPA) was one of the environmental hormones that would cause endocrine and metabolic disorders in human or wildlife. This paper proposed a method to detect the trace amounts of BPA in water samples by fully utilizing the enrichment and resonance amplification functions of a new dual-functional membrane. In this work, gold nanoparticles (AuNPs) modified by 3-amino-5-mercapto-1,2,4-triazole (AMT) were embedded in nylon66 membrane to produce a dual-functional membrane which could carry out sample enrichment by capturing BPA molecules from water and achieve resonance amplification by connecting BPA to the surfaces of AuNPs. By designing an automatic sampler for large-volume enrichment, the SERS enhancement factor (EF) of the method was further improved to 1.2 × 105. The present method had been successfully applied to detect BPA in drinking water and environmental water by SERS with the detection limit of 0.012 μg/L. It had the potential for on-site detecting of BPA in various water samples. 展开更多
关键词 dual-functional membrane Enrichment Resonance amplification Bisphenol A Surface-enhanced Raman scattering
原文传递
Joint Beamforming Design for Dual-Functional Radar-Communication Systems Under Beampattern Gain Constraints
16
作者 CHEN Guangyi ZHANG Ruoyu +2 位作者 REN Hong LIN Xu WU Wen 《ZTE Communications》 2024年第3期13-20,共8页
The joint beamforming design challenge for dual-functional radar-communication systems is addressed in this paper.The base station in these systems is tasked with simultaneously sending shared signals for both multi-u... The joint beamforming design challenge for dual-functional radar-communication systems is addressed in this paper.The base station in these systems is tasked with simultaneously sending shared signals for both multi-user communication and target sensing.The primary objective is to maximize the sum rate of multi-user communication,while also ensuring sufficient beampattern gain at particular angles that are of interest for sensing,all within the constraints of the transmit power budget.To tackle this complex non-convex problem,an effective algorithm that iteratively optimizes the joint beamformers is developed.This algorithm leverages the techniques of fractional programming and semidefinite relaxation to achieve its goals.The numerical results confirm the effectiveness of the proposed algorithm. 展开更多
关键词 dual-functional radar-communication joint beamforming design beampattern gain constraints semidefinite relaxation fractional programming
在线阅读 下载PDF
Dual-functional hydrogen-bonded organic frameworks for aniline and ultraviolet sensitive detection 被引量:1
17
作者 Zhijun Ke Kexin Chen +7 位作者 Zhenzhen Li Jie Huang Zizhu Yao Wen Dai Xiaofan Wang Chulong Liu Shengchang Xiang Zhangjing Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第10期3109-3112,共4页
A novel hydrogen-bonded organic frameworks(HOFs)FJU-200 has been constructed from N,N’-bis(5-isophthalic acid)naphthalimide(H_(4)L).FJU-200 has a good dual-function of aniline and ultraviolet detection.FJU-200 is the... A novel hydrogen-bonded organic frameworks(HOFs)FJU-200 has been constructed from N,N’-bis(5-isophthalic acid)naphthalimide(H_(4)L).FJU-200 has a good dual-function of aniline and ultraviolet detection.FJU-200 is the first case of HOF with dual sensing of visual color changes and photoluminescence quenching for aniline detection,and the detection limit of aniline can reach5.5 x 10^(-4)mol/L.Under ultraviolet FJU-200 will rapidly change from light yellow to rustic brown,which makes it possible to use FJU-200 to achieve minute-level ultraviolet detection.Moreover,for more convenient use,FJU-200 test papers are prepared.Using them,convenient and fast aniline or ultraviolet detection can be realized.The single-crystal X-ray structures show that compared with the original FJU-200,both PhNH_(2)@FJU-200 and UV-FJU-200 have larger pore sizes,and the dihedral angles of the H_(2)L^(2-)in framework has been changed. 展开更多
关键词 Hydrogen-bonded organic frameworks(HOFs) dual-function Aniline detection Ultraviolet detection SENSITIVE
原文传递
Nd@g-C_(3)N_(4)dual-functional photosynthesis and antitumor activities of 3-fluoroalkylated quinoxalin-2(1H)-ones
18
作者 Qiong-Hui Peng Ning-Bo Li +6 位作者 Jia-Cheng Hou Cai-Jun He Ya-Xin Yang Chun-Lin Zhuang Li-Juan Ou Mei Yuan Wei-Min He 《Chinese Chemical Letters》 2025年第12期199-203,共5页
Herein,the Nd@g-C_(3)N_(4) dual-functional photocatalysis enabled fluoroalkylative heteroarylation of alkenes with R_(f)SO_(2)Cl under visible-light and ultrasound conditions was firstly reported.The photogenerated el... Herein,the Nd@g-C_(3)N_(4) dual-functional photocatalysis enabled fluoroalkylative heteroarylation of alkenes with R_(f)SO_(2)Cl under visible-light and ultrasound conditions was firstly reported.The photogenerated electron-driven reductive production of fluoroalkyl radical paired with photogenerated hole-driven oxidative production of chloride radical resulted in the full utilization of photogenerated carrier for bond formation.A wide range of N-heteroarenes,alkenes and R_(f)SO_(2)Cl,were well compatible for this reaction to access valuable fluoroalkylated N-heteroarenes with diverse structural features.The antitumor potential of synthesized fluoroalkylated N-heterocycles against Glioma 261 cells was evaluated by CCK8 assay.Notably,compound 4 aka demonstrated remarkable efficacy,exhibiting approximately sevenfold greater potency than temozolomide,a widely used chemotherapeutic agent. 展开更多
关键词 dual-functional photocatalysis Dual role Quinoxalin-2(1H)-one Fluoroalkylatione Photogenerated carrier
原文传递
Engineering the Dual-Functional Materials for Lithium-Sulfur Batteries
19
作者 Wanming Teng Rui Wang +2 位作者 Jingguo Cheng Pei Xiao Deli Wang 《Renewables》 2025年第5期306-333,共28页
Lithium-sulfur(Li–S)batteries are promising next-generation energy storage systems due to their high theoretical energy density,low cost,and environmental friendliness.However,their commercialization faces major chal... Lithium-sulfur(Li–S)batteries are promising next-generation energy storage systems due to their high theoretical energy density,low cost,and environmental friendliness.However,their commercialization faces major challenges including safety risks caused by lithium dendrite formation at the anode and rapid capacity degradation resulting from the shuttle effect of soluble lithium polysulfides(LiPSs)at the cathode.To address these challenges,synergistic anode/cathode modification strategies utilizing bifunctional materials have emerged as a promising solution.By engineering advanced cathode/anode host materials and functional separators,these approaches target dendrite-free lithium deposition and efficient catalytic conversion of LiPSs,thereby enhancing both safety and cycling stability. 展开更多
关键词 lithium-sulfur batteries dual-functional host material SEPARATOR shuttle effect inhibition dendrite growth suppression
原文传递
A Dual-Functional Fluorescence Probe for Simultaneous in Vivo Imaging of AβAggregates and Hydrogen Peroxide in the Brain of Mice with Alzheimer’s Disease
20
作者 Jiajia Lv Hongyu Li +4 位作者 Jie Gao Nan Dong Wen Shi Huimin Ma Zeli Yuan 《CCS Chemistry》 2025年第10期3119-3130,共12页
Amyloid-β(Aβ)plaques and reactive oxygen species(ROS)are two important and highly correlated pathological markers of Alzheimer’s disease(AD).Therefore,the simultaneous reliable detection of the two markers is essen... Amyloid-β(Aβ)plaques and reactive oxygen species(ROS)are two important and highly correlated pathological markers of Alzheimer’s disease(AD).Therefore,the simultaneous reliable detection of the two markers is essential for elucidating their pathological roles in AD.In this study,a dual-functional fluorescence probe(NPBZ)was developed for simultaneous in vivo imaging of Aβplaques and hydrogen peroxide(H_(2)O_(2)).NPBZ,composed of a rotatable D–π–A structural fluorophore and a H_(2)O_(2)-responsive p-pinacolborylbenzyl group,showed a large fluorescence increase at 708 nm upon interaction with Aβaggregates;however,after reacting with H_(2)O_(2),the emission of NPBZ was blueshifted to 618 nm.The large spectral shift(90 nm)enabled the independent recognition of H_(2)O_(2)and Aβaggregates in two channels,thus achieving dual-functional detection.Moreover,NPBZ can target mitochondria and monitor the in situ production of H_(2)O_(2)induced by Aβaggregates in neuronal cells.Most notably,NPBZ has the ability to penetrate the blood-brain barrier and to simultaneously image Aβplaques and H_(2)O_(2)in the brain of AD mice of different ages via the two independent channels in vivo.The dual-functional detection performance makes NPBZ useful in the diagnostic study of AD,which may provide direct elucidations for the roles of Aβplaques and H_(2)O_(2)in the pathogenesis of AD. 展开更多
关键词 dual-functional fluorescence probe Aβplaques hydrogen peroxide fluorescence imaging Alzheimer’s disease
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部