The ionospheric time delay is one of the main error sources in C/A code GPS navigation and positioning applications. In this paper, a method is proposed for real-time dual-frequency ionospheric time-delay correcting u...The ionospheric time delay is one of the main error sources in C/A code GPS navigation and positioning applications. In this paper, a method is proposed for real-time dual-frequency ionospheric time-delay correcting using a C/A code GPS receiver, and the principle of the circuit block diagram for this method is analyzed with its feasibility theoretically demonstrated.展开更多
With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A mag...With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.展开更多
This paper presents a compact broadband antenna that overcomes bandwidth limitations in a diamond nitrogenvacancy(NV)center-based quantum magnetic sensor.Conventional antennas struggle to achieve both broadband operat...This paper presents a compact broadband antenna that overcomes bandwidth limitations in a diamond nitrogenvacancy(NV)center-based quantum magnetic sensor.Conventional antennas struggle to achieve both broadband operation and compact integration,restricting the sensitivity and dynamic range of the sensor.The broadband antenna based on a dualfrequency monopole structure achieves a bandwidth extension of 777 MHz at the Zeeman splitting frequency of 2.87 GHz,with the dual resonant points positioned near 2.87 GHz.Additionally,high-resolution imaging of the microwave magnetic field on the antenna surface was performed using a diamond optical fiber probe,which verified the dual-frequency design principle.Experimental results using the proposed antenna demonstrate the outstanding performance of the NV centerbased magnetic sensor:a sensitivity of 55 nT/Hz^(1/2)and a dynamic range of up to 54.0 dB.Compared to sensors using conventional antennas,the performance has been significantly improved.展开更多
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule...Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.展开更多
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The...Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.展开更多
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med...Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.展开更多
Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Althoug...Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.展开更多
This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman codi...This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...展开更多
Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first...Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.展开更多
The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS ...The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS (personal communications systems). This paper concentrateson channel decoders that exploit the residual redundancy inherent in the enhanced variable ratecodec bitstream. This residual redundancy is quantified by modeling the parameters as first orderMarkov chains and computing the entropy rate based on the relative frequencies of transitions.Moreover, this residual redundancy can be exploited by an appropriately 'tuned' channel decoder toprovide substantial coding gain when compared with the decoders that do not exploit it. Channelcoding schemes include convolutional codes, and iteratively decoded parallel concatenatedconvolutional 'turbo' codes.展开更多
Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rat...Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.展开更多
4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimen...4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.展开更多
Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BC...Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.展开更多
Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list...Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.展开更多
A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity w...A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity working in the TE18,7 mode at 105 GHz and the TE24,9 mode at 140 GHz.A triode magnetron injection gun and a built-in quasi-optical mode converter were designed to operate at these two frequencies.For the proof-test phase,the gyrotron was equipped with a single-disk boron nitride window to achieve radio frequency output with a power of~500 k W for a short-pulse duration.In the preliminary short-pulse proof-test in the first quarter of2021,the dual-frequency gyrotron achieved output powers of 300 k W at 105 GHz and 540 k W at140 GHz,respectively,under 5 Hz 1 ms continuous pulse-burst operations.Power upgrade and pulse-width extension were hampered by the limitation of the high-voltage power supply and output window.This gyrotron design was preliminarily validated.展开更多
Based on the ideas of controlling relative quality and rearranging bitplanes, a new ROI coding method for JPEG2000 was proposed, which shifts and rearranges bitplanes in units of bitplane groups. It can code arbitrary...Based on the ideas of controlling relative quality and rearranging bitplanes, a new ROI coding method for JPEG2000 was proposed, which shifts and rearranges bitplanes in units of bitplane groups. It can code arbitrary shaped ROI without shape coding, and reserve almost arbitrary percent of background information. It also can control the relative quality of progressive decoded images. In addition, it is easy to be implemented and has low computational cost.展开更多
Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of ...Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.展开更多
The wind retrieval performance of HY-2 A scanning scatterometer operating at Ku-band in HH and VV polarizations has been well evaluated in the wind speed range of 0–25 m s^-1.In order to obtain more accurate ocean wi...The wind retrieval performance of HY-2 A scanning scatterometer operating at Ku-band in HH and VV polarizations has been well evaluated in the wind speed range of 0–25 m s^-1.In order to obtain more accurate ocean wind field,a potential extension of dual-frequency(C-band and Ku-band)polarimetric measurements is investigated for both low and very high wind speeds,from 5 to 45 m s^-1.Based on the geophysical model functions of C-band and Ku-band,the simulation results show that the polarimetric measurements of Ku-band can improve the wind vector retrieval over the entire scatterometer swath,especially in nadir area,with the wind direction root-mean-square error(RMSE)less than 12?in the wind speed range of 5–25 m s^-1.Furthermore,the results also show that C-band cross-polarization plays a very important role in improving the wind speed retrieval,with the wind speed retrieval accuracy better than 2 m s^-1 for all wind conditions(0–45 m s^-1).For extreme winds,the C-band HH backscatter coefficients modeled by CMOD5.N(H)and the ocean co-polarization ratio model at large incidence are used to retrieve sea surface wind vector.This result reveals that there is a big decrease of wind direction retrieval RMSE for extreme wind fields,and the retrieved result of C-band HH polarization is nearly the same as that of C-band VV polarization for low-to-high wind speed(5–25 m s^-1).Thus,to improve the wind retrieval for all wind conditions,the dual-frequency polarimetric scatterometer with C-band and Ku-band horizontal polarization in inner beam,and C-band horizontal and Ku-band vertical polarization in outer beam,can be used to measure ocean winds.This study will contribute to the wind retrieval with merged satellites data and the future spaceborne scatterometer.展开更多
An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcti...An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcting in a single process, with superior performance compared with traditional separated techniques. The concept of adaptiveness is applied not only to the source model but also to the amount of coding redundancy. In addition, an improved branch metric computing algorithm and a faster sequential searching algorithm compared with the system proposed by Grangetto were proposed. The proposed system is tested in the case of image transmission over the AWGN channel, and compared with traditional separated system in terms of packet error rate and complexity. Both hard and soft decoding were taken into account.展开更多
Based on the fundamental ideas concerning microwave attenuation in plasma, we obtain a new expression of transmission attenuation of microwaves as a function of the incident wave frequency. And with reasonable hypothe...Based on the fundamental ideas concerning microwave attenuation in plasma, we obtain a new expression of transmission attenuation of microwaves as a function of the incident wave frequency. And with reasonable hypothesis, analytical forms of the electron density and the electron-neutral collision frequency are derived from the equations of the transmission attenuation of microwaves at two near frequencies. This method gives an effective and easy approach to diagnose the unmagnetized plasma.展开更多
文摘The ionospheric time delay is one of the main error sources in C/A code GPS navigation and positioning applications. In this paper, a method is proposed for real-time dual-frequency ionospheric time-delay correcting using a C/A code GPS receiver, and the principle of the circuit block diagram for this method is analyzed with its feasibility theoretically demonstrated.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.62371258,62335012,62205160,and 62435010)the Tianjin Youth Science and Technology Talent Project(Grant No.QN20230227)+1 种基金the Natural Science Foundation of Tianjin(Grant No.24JCYBJC01860)the Fundamental Research Funds for the Central Universities,Nan-kai University(Grant No.075-63253215).
文摘With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Science and Technology Plan Project of the State Administration of Market Regulation,China(Grant No.2021MK039)the Suqian Talent Elite Program(Grant No.SQQN202414)。
文摘This paper presents a compact broadband antenna that overcomes bandwidth limitations in a diamond nitrogenvacancy(NV)center-based quantum magnetic sensor.Conventional antennas struggle to achieve both broadband operation and compact integration,restricting the sensitivity and dynamic range of the sensor.The broadband antenna based on a dualfrequency monopole structure achieves a bandwidth extension of 777 MHz at the Zeeman splitting frequency of 2.87 GHz,with the dual resonant points positioned near 2.87 GHz.Additionally,high-resolution imaging of the microwave magnetic field on the antenna surface was performed using a diamond optical fiber probe,which verified the dual-frequency design principle.Experimental results using the proposed antenna demonstrate the outstanding performance of the NV centerbased magnetic sensor:a sensitivity of 55 nT/Hz^(1/2)and a dynamic range of up to 54.0 dB.Compared to sensors using conventional antennas,the performance has been significantly improved.
基金supported by the National Natural Science Foundation of China(No.12104141).
文摘Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LL.Z012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901).
文摘Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
基金supported by the National Natural Science Foundation of China(NSFC)with project ID 62071498the Guangdong National Science Foundation(GDNSF)with project ID 2024A1515010213.
文摘Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.
基金supported by Key Laboratory of Cyberspace Security,Ministry of Education,China。
文摘Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.
文摘This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...
基金The National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.
文摘The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS (personal communications systems). This paper concentrateson channel decoders that exploit the residual redundancy inherent in the enhanced variable ratecodec bitstream. This residual redundancy is quantified by modeling the parameters as first orderMarkov chains and computing the entropy rate based on the relative frequencies of transitions.Moreover, this residual redundancy can be exploited by an appropriately 'tuned' channel decoder toprovide substantial coding gain when compared with the decoders that do not exploit it. Channelcoding schemes include convolutional codes, and iteratively decoded parallel concatenatedconvolutional 'turbo' codes.
基金This work was supported in part by National Natural Science Foundation of China(No.61671324)the Director’s Funding from Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM201712).
文摘Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.
基金Partly supported by the National Natural Science Foundation of China (No. 20176053)Academic Foundation of Zhejiang University of Technology (No. 20040004).
文摘4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61271423)
文摘Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.
基金supported by the National Key R&D Program of China(2018YFB2101300)the National Science Foundation of China(61973056)
文摘Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.
基金supported in part by NSAF(No.U1830201)in part by the State Administration of Science,Technology and Industry for Nation Defense of China,Technology Foundation Project(No.JSJL2019212B006)+1 种基金in part by the Academy Innovation Funder(No.CX2020038)in part by the National Defense Basic Scientific Research Program(No.2018212C015)。
文摘A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity working in the TE18,7 mode at 105 GHz and the TE24,9 mode at 140 GHz.A triode magnetron injection gun and a built-in quasi-optical mode converter were designed to operate at these two frequencies.For the proof-test phase,the gyrotron was equipped with a single-disk boron nitride window to achieve radio frequency output with a power of~500 k W for a short-pulse duration.In the preliminary short-pulse proof-test in the first quarter of2021,the dual-frequency gyrotron achieved output powers of 300 k W at 105 GHz and 540 k W at140 GHz,respectively,under 5 Hz 1 ms continuous pulse-burst operations.Power upgrade and pulse-width extension were hampered by the limitation of the high-voltage power supply and output window.This gyrotron design was preliminarily validated.
基金Electronic Development Fund of Ministry ofInformation Industry of China(No[2004]479)
文摘Based on the ideas of controlling relative quality and rearranging bitplanes, a new ROI coding method for JPEG2000 was proposed, which shifts and rearranges bitplanes in units of bitplane groups. It can code arbitrary shaped ROI without shape coding, and reserve almost arbitrary percent of background information. It also can control the relative quality of progressive decoded images. In addition, it is easy to be implemented and has low computational cost.
基金supported by the Fundamental Research Funds for the Central Universities
文摘Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.
基金supported by the National Key R&D Program of China (No. 2016YFC1401006)the National Natural Science Foundation of China (Nos. 51279186, 51479183 and 41676169)+2 种基金the National Program on Key Basic Research Project (No. 2011CB013704)the 111 Project (No. B14028)the Marine and Fishery Information Center Project of Jiangsu Province (No. SJC2014 110338)
文摘The wind retrieval performance of HY-2 A scanning scatterometer operating at Ku-band in HH and VV polarizations has been well evaluated in the wind speed range of 0–25 m s^-1.In order to obtain more accurate ocean wind field,a potential extension of dual-frequency(C-band and Ku-band)polarimetric measurements is investigated for both low and very high wind speeds,from 5 to 45 m s^-1.Based on the geophysical model functions of C-band and Ku-band,the simulation results show that the polarimetric measurements of Ku-band can improve the wind vector retrieval over the entire scatterometer swath,especially in nadir area,with the wind direction root-mean-square error(RMSE)less than 12?in the wind speed range of 5–25 m s^-1.Furthermore,the results also show that C-band cross-polarization plays a very important role in improving the wind speed retrieval,with the wind speed retrieval accuracy better than 2 m s^-1 for all wind conditions(0–45 m s^-1).For extreme winds,the C-band HH backscatter coefficients modeled by CMOD5.N(H)and the ocean co-polarization ratio model at large incidence are used to retrieve sea surface wind vector.This result reveals that there is a big decrease of wind direction retrieval RMSE for extreme wind fields,and the retrieved result of C-band HH polarization is nearly the same as that of C-band VV polarization for low-to-high wind speed(5–25 m s^-1).Thus,to improve the wind retrieval for all wind conditions,the dual-frequency polarimetric scatterometer with C-band and Ku-band horizontal polarization in inner beam,and C-band horizontal and Ku-band vertical polarization in outer beam,can be used to measure ocean winds.This study will contribute to the wind retrieval with merged satellites data and the future spaceborne scatterometer.
文摘An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcting in a single process, with superior performance compared with traditional separated techniques. The concept of adaptiveness is applied not only to the source model but also to the amount of coding redundancy. In addition, an improved branch metric computing algorithm and a faster sequential searching algorithm compared with the system proposed by Grangetto were proposed. The proposed system is tested in the case of image transmission over the AWGN channel, and compared with traditional separated system in terms of packet error rate and complexity. Both hard and soft decoding were taken into account.
文摘Based on the fundamental ideas concerning microwave attenuation in plasma, we obtain a new expression of transmission attenuation of microwaves as a function of the incident wave frequency. And with reasonable hypothesis, analytical forms of the electron density and the electron-neutral collision frequency are derived from the equations of the transmission attenuation of microwaves at two near frequencies. This method gives an effective and easy approach to diagnose the unmagnetized plasma.