期刊文献+
共找到419篇文章
< 1 2 21 >
每页显示 20 50 100
A Dynamic Deceptive Defense Framework for Zero-Day Attacks in IIoT:Integrating Stackelberg Game and Multi-Agent Distributed Deep Deterministic Policy Gradient
1
作者 Shigen Shen Xiaojun Ji Yimeng Liu 《Computers, Materials & Continua》 2025年第11期3997-4021,共25页
The Industrial Internet of Things(IIoT)is increasingly vulnerable to sophisticated cyber threats,particularly zero-day attacks that exploit unknown vulnerabilities and evade traditional security measures.To address th... The Industrial Internet of Things(IIoT)is increasingly vulnerable to sophisticated cyber threats,particularly zero-day attacks that exploit unknown vulnerabilities and evade traditional security measures.To address this critical challenge,this paper proposes a dynamic defense framework named Zero-day-aware Stackelberg Game-based Multi-Agent Distributed Deep Deterministic Policy Gradient(ZSG-MAD3PG).The framework integrates Stackelberg game modeling with the Multi-Agent Distributed Deep Deterministic Policy Gradient(MAD3PG)algorithm and incorporates defensive deception(DD)strategies to achieve adaptive and efficient protection.While conventional methods typically incur considerable resource overhead and exhibit higher latency due to static or rigid defensive mechanisms,the proposed ZSG-MAD3PG framework mitigates these limitations through multi-stage game modeling and adaptive learning,enabling more efficient resource utilization and faster response times.The Stackelberg-based architecture allows defenders to dynamically optimize packet sampling strategies,while attackers adjust their tactics to reach rapid equilibrium.Furthermore,dynamic deception techniques reduce the time required for the concealment of attacks and the overall system burden.A lightweight behavioral fingerprinting detection mechanism further enhances real-time zero-day attack identification within industrial device clusters.ZSG-MAD3PG demonstrates higher true positive rates(TPR)and lower false alarm rates(FAR)compared to existing methods,while also achieving improved latency,resource efficiency,and stealth adaptability in IIoT zero-day defense scenarios. 展开更多
关键词 Industrial internet of things zero-day attacks Stackelberg game distributed deep deterministic policy gradient defensive spoofing dynamic defense
在线阅读 下载PDF
Optimizing the Multi-Objective Discrete Particle Swarm Optimization Algorithm by Deep Deterministic Policy Gradient Algorithm
2
作者 Sun Yang-Yang Yao Jun-Ping +2 位作者 Li Xiao-Jun Fan Shou-Xiang Wang Zi-Wei 《Journal on Artificial Intelligence》 2022年第1期27-35,共9页
Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains ... Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains to be determined.The present work aims to probe into this topic.Experiments showed that the DDPG can not only quickly improve the convergence speed of MODPSO,but also overcome the problem of local optimal solution that MODPSO may suffer.The research findings are of great significance for the theoretical research and application of MODPSO. 展开更多
关键词 deep deterministic policy gradient multi-objective discrete particle swarm optimization deep reinforcement learning machine learning
在线阅读 下载PDF
Perception Enhanced Deep Deterministic Policy Gradient for Autonomous Driving in Complex Scenarios
3
作者 Lyuchao Liao Hankun Xiao +3 位作者 Pengqi Xing Zhenhua Gan Youpeng He Jiajun Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期557-576,共20页
Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonom... Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles,susceptibility to traffic flow bottlenecks,and imperfect data in perceiving environmental information,rendering them a vital issue in the practical application of autonomous driving.To address the traffic challenges,this work focused on complex roundabouts with multi-lane and proposed a Perception EnhancedDeepDeterministic Policy Gradient(PE-DDPG)for AutonomousDriving in the Roundabouts.Specifically,themodel incorporates an enhanced variational autoencoder featuring an integrated spatial attention mechanism alongside the Deep Deterministic Policy Gradient framework,enhancing the vehicle’s capability to comprehend complex roundabout environments and make decisions.Furthermore,the PE-DDPG model combines a dynamic path optimization strategy for roundabout scenarios,effectively mitigating traffic bottlenecks and augmenting throughput efficiency.Extensive experiments were conducted with the collaborative simulation platform of CARLA and SUMO,and the experimental results show that the proposed PE-DDPG outperforms the baseline methods in terms of the convergence capacity of the training process,the smoothness of driving and the traffic efficiency with diverse traffic flow patterns and penetration rates of autonomous vehicles(AVs).Generally,the proposed PE-DDPGmodel could be employed for autonomous driving in complex scenarios with imperfect data. 展开更多
关键词 Autonomous driving traffic roundabouts deep deterministic policy gradient spatial attention mechanisms
在线阅读 下载PDF
Optimum scheduling of truck-based mobile energy couriers(MEC)using deep deterministic policy gradient
4
作者 Yaze Li Jingxian Wu Yanjun Pan 《Intelligent and Converged Networks》 2025年第3期195-208,共14页
We propose a new architecture of truck-based mobile energy couriers(MEC)for power distribution networks with high penetration of renewable energy sources(RES).Each MEC is a truck equipped with high-density inverters,c... We propose a new architecture of truck-based mobile energy couriers(MEC)for power distribution networks with high penetration of renewable energy sources(RES).Each MEC is a truck equipped with high-density inverters,converters,capacitor banks,and energy storage devices.The MEC platform can improve the flexibility,resilience,and RES hosting capability of a distribution grid through spatial-temporal energy reallocation based on the stochastic behaviors of RES and loads.The employment of MEC necessitates the development of complex scheduling and control schemes that can adaptively cope with the dynamic natures of both the power grid and the transportation network.The problem is formulated as a non-convex optimization problem to minimize the total generation cost,subject to the various constraints imposed by conventional and renewable energy sources,energy storage,and transportation networks,etc.The problem is solved by combining optimal power flow(OPF)with deep reinforcement learning(DRL)under the framework of deep deterministic policy gradient(DDPG).Simulation results demonstrate that the proposed MEC platform with DDPG can achieve significant cost reduction compared to conventional systems with static energy storage. 展开更多
关键词 transportation network renewable energy integration mobile energy couriers(MECs) markov decision process(MDP) deep deterministic policy gradient(DDPG)
原文传递
Simultaneous Depth and Heading Control for Autonomous Underwater Vehicle Docking Maneuvers Using Deep Reinforcement Learning within a Digital Twin System
5
作者 Yu-Hsien Lin Po-Cheng Chuang Joyce Yi-Tzu Huang 《Computers, Materials & Continua》 2025年第9期4907-4948,共42页
This study proposes an automatic control system for Autonomous Underwater Vehicle(AUV)docking,utilizing a digital twin(DT)environment based on the HoloOcean platform,which integrates six-degree-of-freedom(6-DOF)motion... This study proposes an automatic control system for Autonomous Underwater Vehicle(AUV)docking,utilizing a digital twin(DT)environment based on the HoloOcean platform,which integrates six-degree-of-freedom(6-DOF)motion equations and hydrodynamic coefficients to create a realistic simulation.Although conventional model-based and visual servoing approaches often struggle in dynamic underwater environments due to limited adaptability and extensive parameter tuning requirements,deep reinforcement learning(DRL)offers a promising alternative.In the positioning stage,the Twin Delayed Deep Deterministic Policy Gradient(TD3)algorithm is employed for synchronized depth and heading control,which offers stable training,reduced overestimation bias,and superior handling of continuous control compared to other DRL methods.During the searching stage,zig-zag heading motion combined with a state-of-the-art object detection algorithm facilitates docking station localization.For the docking stage,this study proposes an innovative Image-based DDPG(I-DDPG),enhanced and trained in a Unity-MATLAB simulation environment,to achieve visual target tracking.Furthermore,integrating a DT environment enables efficient and safe policy training,reduces dependence on costly real-world tests,and improves sim-to-real transfer performance.Both simulation and real-world experiments were conducted,demonstrating the effectiveness of the system in improving AUV control strategies and supporting the transition from simulation to real-world operations in underwater environments.The results highlight the scalability and robustness of the proposed system,as evidenced by the TD3 controller achieving 25%less oscillation than the adaptive fuzzy controller when reaching the target depth,thereby demonstrating superior stability,accuracy,and potential for broader and more complex autonomous underwater tasks. 展开更多
关键词 Autonomous underwater vehicle docking maneuver digital twin deep reinforcement learning twin delayed deep deterministic policy gradient
在线阅读 下载PDF
State-Incomplete Intelligent Dynamic Multipath Routing Algorithm in LEO Satellite Networks
6
作者 Peng Liang Wang Xiaoxiang 《China Communications》 2025年第2期1-11,共11页
The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has bec... The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data. 展开更多
关键词 deep deterministic policy gradient LEO satellite network message passing neuron network multipath routing
在线阅读 下载PDF
Full-model-free Adaptive Graph Deep Deterministic Policy Gradient Model for Multi-terminal Soft Open Point Voltage Control in Distribution Systems 被引量:2
7
作者 Huayi Wu Zhao Xu +1 位作者 Minghao Wang Youwei Jia 《Journal of Modern Power Systems and Clean Energy》 CSCD 2024年第6期1893-1904,共12页
High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution systems.To prevent voltage violations,multi-terminal soft open points(M-s... High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution systems.To prevent voltage violations,multi-terminal soft open points(M-sOPs)have been integrated into the distribution systems to enhance voltage con-trol flexibility.However,the M-SOP voltage control recalculated in real time cannot adapt to the rapid fluctuations of photovol-taic(PV)power,fundamentally limiting the voltage controllabili-ty of M-SOPs.To address this issue,a full-model-free adaptive graph deep deterministic policy gradient(FAG-DDPG)model is proposed for M-SOP voltage control.Specifically,the attention-based adaptive graph convolutional network(AGCN)is lever-aged to extract the complex correlation features of nodal infor-mation to improve the policy learning ability.Then,the AGCN-based surrogate model is trained to replace the power flow cal-culation to achieve model-free control.Furthermore,the deep deterministic policy gradient(DDPG)algorithm allows FAG-DDPG model to learn an optimal control strategy of M-SOP by continuous interactions with the AGCN-based surrogate model.Numerical tests have been performed on modified IEEE 33-node,123-node,and a real 76-node distribution systems,which demonstrate the effectiveness and generalization ability of the proposed FAG-DDPGmodel. 展开更多
关键词 Soft open point graph attention graph convolutional network reinforcement learning voltage control distribution system deep deterministic policy gradient
原文传递
基于知识嵌入型深度强化学习的电力系统频率紧急控制方法
8
作者 李佳旭 吴俊勇 +2 位作者 史法顺 张振远 李栌苏 《电力系统自动化》 北大核心 2026年第1期97-107,共11页
随着新型电力系统建设的快速推进,电力系统频率安全面临的挑战愈发严峻,当系统发生故障导致频率失稳时,采取紧急控制恢复频率稳定至关重要。文中提出一种基于知识嵌入型深度强化学习(DRL)的电力系统频率紧急控制方法。首先,将频率紧急... 随着新型电力系统建设的快速推进,电力系统频率安全面临的挑战愈发严峻,当系统发生故障导致频率失稳时,采取紧急控制恢复频率稳定至关重要。文中提出一种基于知识嵌入型深度强化学习(DRL)的电力系统频率紧急控制方法。首先,将频率紧急控制问题转化为马尔可夫模型,以仿真系统为强化学习环境,并基于深度确定性策略梯度(DDPG)算法构建深度强化学习智能体。此外,通过理论知识引导动作空间优化,综合考虑高频切机与低频减载两类场景。最后,在IEEE 39节点系统中进行控制效果测试,结果表明:深度强化学习智能体能够给出有效的频率紧急控制策略,维护系统频率安全;知识嵌入的方法改善了模型的训练稳定性,能显著提高智能体的策略学习效率与决策质量。 展开更多
关键词 人工智能 新型电力系统 频率安全 频率紧急控制 深度强化学习 深度确定性策略梯度 高频切机 低频减载
在线阅读 下载PDF
并行异速机批量混合流水车间动态调度方法研究
9
作者 昝云磊 刘贵杰 +4 位作者 王川 张玮 刘新宇 钟正彬 张金营 《机电工程》 北大核心 2026年第1期102-116,共15页
针对电站锅炉屏式管屏制造中多动态事件耦合导致的调度响应滞后及多目标协同优化难题,提出了一种基于深度强化学习的动态调度方法。首先,构建了并行异速机批量混合流水车间调度模型(LSHFSP-Qm),以精确描述异构机器速度、批量转移和能耗... 针对电站锅炉屏式管屏制造中多动态事件耦合导致的调度响应滞后及多目标协同优化难题,提出了一种基于深度强化学习的动态调度方法。首先,构建了并行异速机批量混合流水车间调度模型(LSHFSP-Qm),以精确描述异构机器速度、批量转移和能耗等生产约束条件;然后,基于双延迟深层确定性策略梯度(TD3)算法框架,采用长短时记忆(LSTM)网络重构了策略网络以增强时序特征提取能力,同时,设计了多级奖励机制,集成处理了时差、能耗和订单延迟的惩罚,从而构建了灵活自适应的动态事件驱动多目标重调度机制;最后,通过多组基准算例和车间实验验证了该方法的有效性。研究结果表明:改进TD3算法较传统深度强化学习方法提供了更好的近优解;在某屏式管屏车间中,调度效率提升了309.09%,动态事件反应速度提升了300%,综合生产效率间接提升了14.29%,订单拖期时间缩短了66.7%,生产线设备平均能耗降低了5%。该方法可有效协调多目标冲突,显著增强算法复杂动态环境中的适应性,可为装备制造业车间调度智能化转型提供可行方案。 展开更多
关键词 并行异速机批量混合流水车间调度问题 柔性制造系统及单元 双延迟深层确定性策略梯度算法 深度强化学习 动态调度 多目标优化
在线阅读 下载PDF
基于深度强化学习的柑橘黄龙病智能动态防控策略
10
作者 张勇威 骆智聪 +1 位作者 邓小玲 兰玉彬 《华南农业大学学报》 北大核心 2026年第1期74-85,共12页
【目的】柑橘黄龙病(Citrus Huanglongbing,HLB)传播受多重动态因素耦合影响,传统最优控制方法因计算复杂度高且依赖精确模型,导致其在实际应用中存在局限性。为解决这一问题,本文提出了一种基于双延迟深度确定性策略梯度(Twin delayed ... 【目的】柑橘黄龙病(Citrus Huanglongbing,HLB)传播受多重动态因素耦合影响,传统最优控制方法因计算复杂度高且依赖精确模型,导致其在实际应用中存在局限性。为解决这一问题,本文提出了一种基于双延迟深度确定性策略梯度(Twin delayed deep deterministic policy gradient,TD3)的HLB智能动态防控方法。【方法】首先,构建融合宿主−媒介交互机制的HLB传播控制动力学模型,并通过离散化处理将其转化为马尔科夫决策过程环境;随后,引入TD3算法,设计生物约束兼容的多目标奖励函数;最后,提出HLB防控策略。【结果】仿真试验结果表明,与DDPG、PPO等传统算法相比,本文提出的基于TD3的HLB动态防控策略在多项关键指标上均呈现出明显优势,系统状态收敛至无病平衡点的速度分别提升了26.59%和20.99%;累计控制成本分别降低了23.79%和19.90%;杀虫剂峰值使用量减少了约35.57%。数值分析结果进一步表明,在HLB爆发初期,及时喷洒杀虫剂干预对阻断HLB传播链具有关键作用;动态防控策略相较于恒定控制策略,在抑制病害扩散效果和降低实施控制的成本方面更具优势。【结论】本研究提出的基于TD3的HLB防控方法为高效控制HLB传播提供了新的视角,展示了深度强化学习方法在农业病害防控中的潜力。 展开更多
关键词 柑橘黄龙病 深度强化学习 双延迟深度确定性策略梯度 最优控制 防控策略
在线阅读 下载PDF
Relevant experience learning:A deep reinforcement learning method for UAV autonomous motion planning in complex unknown environments 被引量:22
11
作者 Zijian HU Xiaoguang GAO +2 位作者 Kaifang WAN Yiwei ZHAI Qianglong WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第12期187-204,共18页
Unmanned Aerial Vehicles(UAVs)play a vital role in military warfare.In a variety of battlefield mission scenarios,UAVs are required to safely fly to designated locations without human intervention.Therefore,finding a ... Unmanned Aerial Vehicles(UAVs)play a vital role in military warfare.In a variety of battlefield mission scenarios,UAVs are required to safely fly to designated locations without human intervention.Therefore,finding a suitable method to solve the UAV Autonomous Motion Planning(AMP)problem can improve the success rate of UAV missions to a certain extent.In recent years,many studies have used Deep Reinforcement Learning(DRL)methods to address the AMP problem and have achieved good results.From the perspective of sampling,this paper designs a sampling method with double-screening,combines it with the Deep Deterministic Policy Gradient(DDPG)algorithm,and proposes the Relevant Experience Learning-DDPG(REL-DDPG)algorithm.The REL-DDPG algorithm uses a Prioritized Experience Replay(PER)mechanism to break the correlation of continuous experiences in the experience pool,finds the experiences most similar to the current state to learn according to the theory in human education,and expands the influence of the learning process on action selection at the current state.All experiments are applied in a complex unknown simulation environment constructed based on the parameters of a real UAV.The training experiments show that REL-DDPG improves the convergence speed and the convergence result compared to the state-of-the-art DDPG algorithm,while the testing experiments show the applicability of the algorithm and investigate the performance under different parameter conditions. 展开更多
关键词 Autonomous Motion Planning(AMP) deep deterministic policy gradient(DDPG) deep Reinforcement Learning(DRL) Sampling method UAV
原文传递
Deep reinforcement learning and its application in autonomous fitting optimization for attack areas of UCAVs 被引量:14
12
作者 LI Yue QIU Xiaohui +1 位作者 LIU Xiaodong XIA Qunli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期734-742,共9页
The ever-changing battlefield environment requires the use of robust and adaptive technologies integrated into a reliable platform. Unmanned combat aerial vehicles(UCAVs) aim to integrate such advanced technologies wh... The ever-changing battlefield environment requires the use of robust and adaptive technologies integrated into a reliable platform. Unmanned combat aerial vehicles(UCAVs) aim to integrate such advanced technologies while increasing the tactical capabilities of combat aircraft. As a research object, common UCAV uses the neural network fitting strategy to obtain values of attack areas. However, this simple strategy cannot cope with complex environmental changes and autonomously optimize decision-making problems. To solve the problem, this paper proposes a new deep deterministic policy gradient(DDPG) strategy based on deep reinforcement learning for the attack area fitting of UCAVs in the future battlefield. Simulation results show that the autonomy and environmental adaptability of UCAVs in the future battlefield will be improved based on the new DDPG algorithm and the training process converges quickly. We can obtain the optimal values of attack areas in real time during the whole flight with the well-trained deep network. 展开更多
关键词 attack area neural network deep deterministic policy gradient(DDPG) unmanned combat aerial vehicle(UCAV)
在线阅读 下载PDF
Moving target defense of routing randomization with deep reinforcement learning against eavesdropping attack 被引量:5
13
作者 Xiaoyu Xu Hao Hu +3 位作者 Yuling Liu Jinglei Tan Hongqi Zhang Haotian Song 《Digital Communications and Networks》 SCIE CSCD 2022年第3期373-387,共15页
Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harm... Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harmful attacks. Routing randomization is a relevant research direction for moving target defense, which has been proven to be an effective method to resist eavesdropping attacks. To counter eavesdropping attacks, in this study, we analyzed the existing routing randomization methods and found that their security and usability need to be further improved. According to the characteristics of eavesdropping attacks, which are “latent and transferable”, a routing randomization defense method based on deep reinforcement learning is proposed. The proposed method realizes routing randomization on packet-level granularity using programmable switches. To improve the security and quality of service of legitimate services in networks, we use the deep deterministic policy gradient to generate random routing schemes with support from powerful network state awareness. In-band network telemetry provides real-time, accurate, and comprehensive network state awareness for the proposed method. Various experiments show that compared with other typical routing randomization defense methods, the proposed method has obvious advantages in security and usability against eavesdropping attacks. 展开更多
关键词 Routing randomization Moving target defense deep reinforcement learning deep deterministic policy gradient
在线阅读 下载PDF
Distributed optimization of electricity-Gas-Heat integrated energy system with multi-agent deep reinforcement learning 被引量:5
14
作者 Lei Dong Jing Wei +1 位作者 Hao Lin Xinying Wang 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期604-617,共14页
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co... The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents. 展开更多
关键词 Integrated energy system Multi-agent system Distributed optimization Multi-agent deep deterministic policy gradient Real-time optimization decision
在线阅读 下载PDF
A UAV collaborative defense scheme driven by DDPG algorithm 被引量:3
15
作者 ZHANG Yaozhong WU Zhuoran +1 位作者 XIONG Zhenkai CHEN Long 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1211-1224,共14页
The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents ... The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process. 展开更多
关键词 deep deterministic policy gradient(DDPG)algorithm unmanned aerial vehicles(UAVs)swarm task decision making deep reinforcement learning sparse reward problem
在线阅读 下载PDF
Deep reinforcement learning guidance with impact time control 被引量:1
16
作者 LI Guofei LI Shituo +1 位作者 LI Bohao WU Yunjie 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1594-1603,共10页
In consideration of the field-of-view(FOV)angle con-straint,this study focuses on the guidance problem with impact time control.A deep reinforcement learning guidance method is given for the missile to obtain the desi... In consideration of the field-of-view(FOV)angle con-straint,this study focuses on the guidance problem with impact time control.A deep reinforcement learning guidance method is given for the missile to obtain the desired impact time and meet the demand of FOV angle constraint.On basis of the framework of the proportional navigation guidance,an auxiliary control term is supplemented by the distributed deep deterministic policy gradient algorithm,in which the reward functions are developed to decrease the time-to-go error and improve the terminal guid-ance accuracy.The numerical simulation demonstrates that the missile governed by the presented deep reinforcement learning guidance law can hit the target successfully at appointed arrival time. 展开更多
关键词 impact time deep reinforcement learning guidance law field-of-view(FOV)angle deep deterministic policy gradient
在线阅读 下载PDF
Real-Time Implementation of Quadrotor UAV Control System Based on a Deep Reinforcement Learning Approach
17
作者 Taha Yacine Trad Kheireddine Choutri +4 位作者 Mohand Lagha Souham Meshoul Fouad Khenfri Raouf Fareh Hadil Shaiba 《Computers, Materials & Continua》 SCIE EI 2024年第12期4757-4786,共30页
The popularity of quadrotor Unmanned Aerial Vehicles(UAVs)stems from their simple propulsion systems and structural design.However,their complex and nonlinear dynamic behavior presents a significant challenge for cont... The popularity of quadrotor Unmanned Aerial Vehicles(UAVs)stems from their simple propulsion systems and structural design.However,their complex and nonlinear dynamic behavior presents a significant challenge for control,necessitating sophisticated algorithms to ensure stability and accuracy in flight.Various strategies have been explored by researchers and control engineers,with learning-based methods like reinforcement learning,deep learning,and neural networks showing promise in enhancing the robustness and adaptability of quadrotor control systems.This paper investigates a Reinforcement Learning(RL)approach for both high and low-level quadrotor control systems,focusing on attitude stabilization and position tracking tasks.A novel reward function and actor-critic network structures are designed to stimulate high-order observable states,improving the agent’s understanding of the quadrotor’s dynamics and environmental constraints.To address the challenge of RL hyper-parameter tuning,a new framework is introduced that combines Simulated Annealing(SA)with a reinforcement learning algorithm,specifically Simulated Annealing-Twin Delayed Deep Deterministic Policy Gradient(SA-TD3).This approach is evaluated for path-following and stabilization tasks through comparative assessments with two commonly used control methods:Backstepping and Sliding Mode Control(SMC).While the implementation of the well-trained agents exhibited unexpected behavior during real-world testing,a reduced neural network used for altitude control was successfully implemented on a Parrot Mambo mini drone.The results showcase the potential of the proposed SA-TD3 framework for real-world applications,demonstrating improved stability and precision across various test scenarios and highlighting its feasibility for practical deployment. 展开更多
关键词 deep reinforcement learning hyper-parameters optimization path following QUADROTOR twin delayed deep deterministic policy gradient and simulated annealing
在线阅读 下载PDF
Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay
18
作者 Li Wang Xiaoyong Wang 《Energy Engineering》 EI 2024年第12期3953-3979,共27页
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ... Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption. 展开更多
关键词 Plug-in hybrid electric vehicles deep reinforcement learning energy management strategy deep deterministic policy gradient entropy regularization prioritized experience replay
在线阅读 下载PDF
RIS-Assisted UAV-D2D Communications Exploiting Deep Reinforcement Learning
19
作者 YOU Qian XU Qian +2 位作者 YANG Xin ZHANG Tao CHEN Ming 《ZTE Communications》 2023年第2期61-69,共9页
Device-to-device(D2D)communications underlying cellular networks enabled by unmanned aerial vehicles(UAV)have been regarded as promising techniques for next-generation communications.To mitigate the strong interferenc... Device-to-device(D2D)communications underlying cellular networks enabled by unmanned aerial vehicles(UAV)have been regarded as promising techniques for next-generation communications.To mitigate the strong interference caused by the line-of-sight(LoS)airto-ground channels,we deploy a reconfigurable intelligent surface(RIS)to rebuild the wireless channels.A joint optimization problem of the transmit power of UAV,the transmit power of D2D users and the RIS phase configuration are investigated to maximize the achievable rate of D2D users while satisfying the quality of service(QoS)requirement of cellular users.Due to the high channel dynamics and the coupling among cellular users,the RIS,and the D2D users,it is challenging to find a proper solution.Thus,a RIS softmax deep double deterministic(RIS-SD3)policy gradient method is proposed,which can smooth the optimization space as well as reduce the number of local optimizations.Specifically,the SD3 algorithm maximizes the reward of the agent by training the agent to maximize the value function after the softmax operator is introduced.Simulation results show that the proposed RIS-SD3 algorithm can significantly improve the rate of the D2D users while controlling the interference to the cellular user.Moreover,the proposed RIS-SD3 algorithm has better robustness than the twin delayed deep deterministic(TD3)policy gradient algorithm in a dynamic environment. 展开更多
关键词 device-to-device communications reconfigurable intelligent surface deep reinforcement learning softmax deep double deterministic policy gradient
在线阅读 下载PDF
基于无人机辅助联邦边缘学习通信系统的安全隐私能效研究 被引量:1
20
作者 卢为党 冯凯 +2 位作者 丁雨 李博 赵楠 《电子与信息学报》 北大核心 2025年第5期1322-1331,共10页
无人机(UAV)辅助联邦边缘学习的通信能够有效解决终端设备数据孤岛问题和数据泄露风险。然而,窃听者可能利用联邦边缘学习中的模型更新来恢复终端设备的原始隐私数据,从而对系统的隐私安全构成极大威胁。为了克服这一挑战,该文在无人机... 无人机(UAV)辅助联邦边缘学习的通信能够有效解决终端设备数据孤岛问题和数据泄露风险。然而,窃听者可能利用联邦边缘学习中的模型更新来恢复终端设备的原始隐私数据,从而对系统的隐私安全构成极大威胁。为了克服这一挑战,该文在无人机辅助联邦边缘学习通信系统提出一种有效的安全聚合和资源优化方案。具体来说,终端设备利用其本地数据进行局部模型训练来更新参数,并将其发送给全局无人机,无人机据此聚合出新的全局模型参数。窃听者试图通过窃听终端设备发送的模型参数信号来恢复终端设备的原始数据。该文通过联合优化终端设备的传输带宽、CPU频率、发送功率以及无人机的CPU频率,最大化安全隐私能效。为了解决该优化问题,该文提出一种演进深度确定性策略梯度(DDPG)算法,通过和系统智能交互,在保证基本时延和能耗需求的情况下获得安全聚合和资源优化方案。最后,通过和基准方案对比,验证了所提方案的有效性。 展开更多
关键词 无人机 联邦边缘学习 能效 资源优化 深度确定性策略梯度
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部