A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excit...A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excited states transition, respectively, and the Rydberg transition is driven by a microwave(MW) field. A gain peak appears in the probe transmission and is sensitive to the MW field strength. Optical PAM-4 can be achieved by encoding an MW signal and decoding the magnitude of a probe signal. Simulation results show that the differential nonlinearity and the integral nonlinearity of the proposed scheme can be reduced by 5 times and 6 times, respectively, compared with the counterparts of previous scheme, and the ratio of level separation mismatch is close to the ideal value 1. Moreover, the scheme is extended to optical PAM-8 signal, which may further improve the spectral efficiency.展开更多
Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Du...Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage.展开更多
基金Project supported by the Shandong Natural Science Foundation,China (Grant No. ZR2021LLZ006)the National Natural Science Foundation of China (Grant Nos. 61675118 and 12274123)+1 种基金the Taishan Scholars Program of Shandong Province,China (Grant No. ts20190936)the Shandong University of Science and Technology Research Fund,China(Grant No. 2015TDJH102)。
文摘A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excited states transition, respectively, and the Rydberg transition is driven by a microwave(MW) field. A gain peak appears in the probe transmission and is sensitive to the MW field strength. Optical PAM-4 can be achieved by encoding an MW signal and decoding the magnitude of a probe signal. Simulation results show that the differential nonlinearity and the integral nonlinearity of the proposed scheme can be reduced by 5 times and 6 times, respectively, compared with the counterparts of previous scheme, and the ratio of level separation mismatch is close to the ideal value 1. Moreover, the scheme is extended to optical PAM-8 signal, which may further improve the spectral efficiency.
基金supported by National Natural Science Foundation of China (No. 10775103)
文摘Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage.